

RECEIVED

AUG 1 6 2007

NORTHEAST REGIONAL OFFICE

August 16, 2007

Mr. Melvin Kleckner 2nd Floor, Town Hall 71 Mt. Vernon Street Winchester, MA 01890 Ms. Jennifer Murphy Winchester Health Department Lower Level, Town Hall 71 Mt. Vernon Street Winchester, MA 01890

RE: Notice of Phase IV Completion Report & Class C-2 RAO Statement

> 12 Swanton Street Winchester, MA RTN: 3-18598

ACOP-NE-04-3A027

Dear Ladies and Gentlemen:

The purpose of this letter is to inform you that on August 16, 2007, a Phase IV Completion Report and Class C-2 Response Action Outcome (RAO) Statement were filed with the MA Department of Environmental Protection (MADEP) Northeast Regional Office for a release of petroleum at the above referenced site (RTN 3-18598). The Phase IV Completion Report and Class C-2 RAO document the remedial and assessment activities conducted at the site to date.

The findings of remedial and assessment activities did not identify a "Condition of No Significant Risk" at the site as per 310 CMR 40.0006. REMSERV, Inc. has therefore prepared a Class C-2 RAO Statement to signify that a "Temporary Solution" has been fulfilled while the site conditions are assessed for the purpose of achieving a "Condition of No Significant Risk" for RTN 3-18598.

If you have any questions, or would like to obtain a copy of the Phase IV Completion Report & Class C-2 RAO Statement, please contact Mr. Thomas P. Simmons, 35 Winthrop Street, Winchester, MA, 01890 781-721-4455.

Sincerely,

REMSERV, Inc.

Thomas P. Simmons

Cc: MA DEP NERO

RECEIVED

AUG 1 62007

DFP

NORTHEAST REGIONAL OFFICE Letter of Transmittal 08/16/2007 MA DEP NERO TO: DATE: 205B Lowell Street RTN 3-18598 PROJECT: Wilmington, MA RS #: ATTN: BWSC WE TRANSMIT: herewith in accordance with your request FOR YOUR: signature and return approval distribution to parties record review & comment THE FOLLOWING: COPIES DATE DESCRIPTION 08/16/07 Phase IV Completion & Class C-2 RAO 1 08/16/07 BWSC-108 1 08/16/07 BWSC-104 Copy of Letter to Winchester Public Officials 08/16/07 COMMENTS: The Phase IV & Class C-2 RAO has been submitted in support of the Administrative Consent Order & Penalty ACOP-NE-04-3A027. COPIES TO: Mr. John Bossi, Bossi Realty Trust 🗸

RECEIVED

AUG 1 6 2007

DEP NORTHEAST PEGIONAL OFFICE

August 16, 2007

MA DEP NERO BWSC 205B Lowell Street Wilmington, MA 01887

RE: Phase IV Completion Report & Class C-2 RAO LSP Opinion

Bossi Realty Trust 12 Swanton Street Winchester, MA 01890

RTN 3-18598

Dear Ladies and Gentlemen:

This letter will serve as the basis for an LSP Opinion required under Section J of the BWSC104 and Section F. of the BWSC108 Transmittal Form regarding the veracity of the material facts, data and other information attached. REMSERV, Inc. attests that the information contained in and attached to this document is accurate and factual.

If you need further information, please call me at (781)-721-4455.

Sincerely,

REMSERV, Inc.

Thomas P. Simmons, LSP

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup

BWSC108

COMPREHENSIVE RESPONSE ACTION TRANSMITTAL FORM & PHASE I COMPLETION STATEMENT

Release Tracking Number 3 18598

Pursuant to 310 CMR 40.0484 (Subpart D) and 40.0800 (Subpart H)

A. SITE LOCATION:			
1, Site Name:			
2. Street Address: 12 Swanton Street	_		
3. Clty/Town: Winchester 4. ZIP Code: 01890			
5. UTM Coordinates: a. UTM N: b. UTM E: RECEIVE	: h		
6. Check here if a Tier Classification Submittal has been provided to DEP for this disposal site.	.		
a. Tier IA b. Tier IB c. Tier IC d. Tier II AUG 1 6 2007			
7. If applicable, provide the Permit Number:			
B. THIS FORM IS BEING USED TO: (check all that apply) NORTHEAST REGIONAL O	ECE		
Submit a Phase I Completion Statement, pursuant to 310 CMR 40.0484.			
2. Submit a Revised Phase I Completion Statement, pursuant to 310 CMR 40.0484.			
3. Submit a Phase II Scope of Work, pursuant to 310 CMR 40.0834.			
4. Submit an Interim Phase II Report. This report does not satisfy the response action deadline requirements in 310 CMR 40.0500.			
5. Submit a final Phase II Report and Completion Statement, pursuant to 310 CMR 40.0836.	1		
6. Submit a Revised Phase II Report and Completion Statement, pursuant to 310 CMR 40.0836.			
7. Submit a Phase III Remedial Action Plan and Completion Statement, pursuant to 310 CMR 40.0862.	Ì		
8. Submit a Revised Phase III Remedial Action Plan and Completion Statement, pursuant to 310 CMP (2007)			
9. Submit a Phase IV Remedy Implementation Plan, pursuant to 310 CMR 40.0874.			
10. Submit a Modified Phase IV Remedy Implementation Plan, pursuant to 310 CMR 40.0874.			
11. Submit an As-Built Construction Report, pursuant to 310 CMR 40.0875.			
12. Submit a Phase IV Status Report, pursuant to 310 CMR 40.0877.			
13. Submit a Phase IV Completion Statement, pursuant to 310 CMR 40.0878 and 40.0879. NURTHEAST REGIONAL OF			
Specify the outcome of Phase IV activities: (check one)	HILE		
a. Phase V Operation, Maintenance or Monitoring of the Comprehensive Remedial Action is necessary to achieve a Response Action Outcome.			
 b. The requirements of a Class A Response Action Outcome have been met. No additional Operation, Maintenance or Monitoring is necessary to ensure the integrity of the Response Action Outcome. A completed Response Action Outcome Statement and Report (BWSC104) will be submitted to DEP. 			
c. The requirements of a Class C Response Action Outcome have been met. No additional Operation, Maintenance of Monitoring is necessary to ensure the integrity of the Response Action Outcome. A completed Response Action Outcome Statement and Report (BWSC104) will be submitted to DEP.			
d. The requirements of a Class C Response Action Outcome have been met. Further Operation, Maintenance or Monitoring of the remedial action is necessary to ensure that conditions are maintained and that further progress is made toward a Permanent Solution. A completed Response Action Outcome Statement and Report (BWSC104) will be submitted to DEP.			
(All sections of this transmittal form must be filled out unless otherwise noted above)			

Revised: 2/15/2005 Page 1 of 5 ĩ

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup

BWSC108

COMPREHENSIVE RESPONSE ACTION TRANSMITTAL FORM & PHASE I COMPLETION STATEMENT

Release Tracking Number

Pursuant to 310 CMR 40.0484 (Subpart D) and 40.0800 (Subpart H)

B. TH	B. THIS FORM IS BEING USED TO (cont.): (check all that apply)			
	14. Submit a Revised Phase IV Completion Statement, pursuant to 310 CMR 40.0878 and 40.0879.			
	15.	Submit a Phase V Status Report, pursuant to 310 CMR 40.0892.		
	16.	Submit a Remedial Monitoring Report. (This report can only be submitted through eDEP.)		
	a. Ty	ype of Report: (check one) . Initial Report . ii. Interim Report . iii. Final Report		
	b. F	requency of Submittal: (check all that apply)		
		i. A Remedial Monitoring Report(s) submitted monthly to address an Imminent Hazard.		
		ii. A Remedial Monitoring Report(s) submitted monthly to address a Condition of Substantial Release Migration.		
		iii. A Remedial Monitoring Report(s) submitted concurrent with a Status Report.		
	c. S	tatus of Site: (check one) i. Phase V ii. Remedy Operation Status iii. Class C RAO		
	d. N	lumber of Remedial Systems and/or Monitoring Programs:		
		eparate BWSC108A, CRA Remedial Monitoring Report, must be filled out for each Remedial System and/or Monitoring ogram addressed by this transmittal form.		
	17 .	Submit a Remedy Operation Status, pursuant to 310 CMR 40.0893.		
	18.	Submit a Status Report to maintain a Remedy Operation Status, pursuant to 310 CMR 40.0893(2).		
	19.	Submit a Modification of a Remedy Operation Status, pursuant to 310 CMR 40.0893(5).		
	20.	Submit a Termination of a Remedy Operation Status, pursuant to 310 CMR 40.0893(6).		
	21.	Submit a Phase V Completion Statement, pursuant to 310 CMR 40.0894.		
	Spe	ecify the outcome of Phase V activities: (check one)		
	a. The requirements of a Class A Response Action Outcome have been met. No additional Operation, Maintenance or Monitoring is necessary to ensure the integrity of the Response Action Outcome. A completed Response Action Outcome Statement (BWSC104) will be submitted to DEP.			
	b. The requirements of a Class C Response Action Outcome have been met. No additional Operation, Maintenance or Monitoring is necessary to ensure the integrity of the Response Action Outcome. A completed Response Action Outcome Statement and Report (BWSC104) will be submitted to DEP.			
		c. The requirements of a Class C Response Action Outcome have been met. Further Operation, Maintenance or Monitoring of the remedial action is necessary to ensure that conditions are maintained and/or that further progress is made toward a Permanent Solution. A completed Response Action Outcome Statement and Report (BWSC104) will be submitted to DEP.		
	22.	Submit a Revised Phase V Completion Statement, pursuant to 310 CMR 40.0894.		
	23.	Submit a Post-Class C Response Action Outcome Status Report, pursuant to 310 CMR 40.0898.		
		(All sections of this transmittal form must be filled out unless otherwise noted above)		

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup

BWSC108

COMPREHENSIVE RESPONSE ACTION TRANSMITTAL FORM & PHASE I COMPLETION STATEMENT

Release Tracking Number

- 18598

Pursuant to 310 CMR 40.0484 (Subpart D) and 40.0800 (Subpart H)

C. LSP SIGNATURE AND STAMP:

I attest under the pains and penalties of perjury that I have personally examined and am familiar with this transmittal form, including any and all documents accompanying this submittal. In my professional opinion and judgment based upon application of (i) the standard of care in 309 CMR 4.02(1), (ii) the applicable provisions of 309 CMR 4.02(2) and (3), and 309 CMR 4.03(2), and (iii) the provisions of 309 CMR 4.03(3), to the best of my knowledge, information and belief,

- > if Section B indicates that a Phase I, Phase II, Phase III, Phase IV or Phase V Completion Statement is being submitted, the response action(s) that is (are) the subject of this submittal (i) has (have) been developed and implemented in accordance with the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, (ii) Is (are) appropriate and reasonable to accomplish the purposes of such response action(s) as set forth in the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, and (iii) comply(ies) with the identified provisions of all orders, permits, and approvals identified in this submittal;
- > if Section B indicates that a Phase II Scope of Work or a Phase IV Remedy Implementation Plan is being submitted, the response action(s) that is (are) the subject of this submittal (i) has (have) been developed in accordance with the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, (ii) is (are) appropriate and reasonable to accomplish the purposes of such response action(s) as set forth in the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, and (iii) comply(ies) with the identified provisions of all orders, permits, and approvals identified in this submittal;
- > if Section B Indicates that an As-Built Construction Report, a Remedy Operation Status, a Phase IV, Phase V or Post-Class C RAO Status Report, a Status Report to Maintain a Remedy Operation Status and/or a Remedial Monitoring Report is being submitted, the response action(s) that is (are) the subject of this submittal (i) is (are) being implemented in accordance with the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, (ii) is (are) appropriate and reasonable to accomplish the purposes of such response action(s) as set forth in the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, and (iii) comply(ies) with the identified provisions of all orders, permits, and approvals identified in this submittal.

I am aware that significant penalties may result, including, but not limited to, possible fines and imprisonment, if I submit information which I know to be false, inaccurate or materially incomplete.

1. LSP#: <u>1698</u>		
2. First Name: Thomas	3. Last Name: Simmons	·
4. Telephone: 781-721-4455 5	5. Ext.: 6. FAX:	
7. Signature:		DANAGE AND THE PARTY OF THE PAR
8. Date: 08/16/2007 (mm/dd/yyyy)	9. LSP Stamp:	THOMAS THE
		SMEACHE DE SE
		The same of the sa
		TO THE PARTY OF TH

Revised: 2/15/2005 Page 3 of 5

COMPREHENSIVE RESPONSE ACTION TRANSMITTAL

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup

BWSC108

Release Tracking Number

18598

FORM & PHASE I COMPLETION STATEMENT Pursuant to 310 CMR 40.0484 (Subpart D) and 40.0800 (Subpart H) D. PERSON UNDERTAKING RESPONSE ACTIONS: c. change in the person Check all that apply: b. change of address a. change in contact name undertaking response actions 2. Name of Organization: Bossi Realty Trust _____ 4. Last Name: Bossi Contact First Name: <u>John</u> 6. Title: _____ 12 Swanton Street 5. Street: 8. State: MA 9. ZIP Code: 01890 Winchester 7. City/Town: 10. Telephone: <u>781-721-0162</u> 11, Ext.: _____ 12. FAX: ____ E. RELATIONSHIP TO SITE OF PERSON UNDERTAKING RESPONSE ACTIONS: ✓ 1. RP or PRP a. Owner b. Operator c. Generator d. Transporter e. Other RP or PRP Specify: _ 2. Fiduciary, Secured Lender or Municipality with Exempt Status (as defined by M.G.L. c. 21E, s. 2) Agency or Public Utility on a Right of Way (as defined by M.G.L. c. 21E, s. 5(|)) 4. Any Other Person Undertaking Response Actions Specify Relationship: F. REQUIRED ATTACHMENT AND SUBMITTALS: 1. Check here if the Response Action(s) on which this opinion is based, if any, are (were) subject to any order(s), permit(s) and/or approval(s) issued by DEP or EPA. If the box is checked, you MUST attach a statement identifying the applicable provisions thereof. 2. Check here to certify that the Chief Municipal Officer and the Local Board of Health have been notified of the submittal of any Phase Reports to DEP. 3. Check here to certify that the Chief Municipal Officer and the Local Board of Health have been notified of the availability of a Phase III Remedial Action Plan. 4. Check here to certify that the Chief Municipal Officer and the Local Board of Health have been notified of the availability of a Phase IV Remedy Implementation Plan. 5. Check here to certify that the Chief Municipal Officer and the Local Board of Health have been notified of any field work involving the Implementation of a Phase IV Remedial Action. 6. If submitting a Modification of a Remedy Operation Status, check here to certify that a statement detailing the compliance history, as per 310 CMR 40.0893(5), for the person making this submittal is attached. 7. If submitting a Modification of a Remedy Operation Status, check here to certify that written consent of the person who submitted the Remedy Operation Status submittal, as per 310 CMR 40.0893(5), is attached. 8. Check here if any non-updatable information provided on this form is incorrect, e.g. Site Name. Send corrections to the DEP Regional Office. 9. Check here to certify that the LSP Opinion containing the material facts, data, and other information is attached.

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup

BWSC108

Release Tracking Number

| -

18598

COMPREHENSIVE RESPONSE ACTION TRANSMITTAL FORM & PHASE I COMPLETION STATEMENT

Pursuant to 310 CMR 40.0484 (Subpart D) and 40.0800 (Subpart H)

G. CERTIFICATION OF PERSON UNDERTAKING RESPONSE ACTIONS:			
examined and am familiar with the information contaitransmittal form, (ii) that, based on my inquiry of those material information contained in this submittal is, to that I am fully authorized to make this attestation on be entity on whose behalf this submittal is made am/is a possible fines and imprisonment, for willfully submitting. 2. By:	3. Title: Trustee/Not Personally		
4. For: John Bossi	5. Date: 08/16/2007		
(Name of person or entity record	, , , , , , , , , , , , , , , , , , , ,		
6. Check here if the address of the person providence. 7. Street:	Iling certification is different from address recorded in Section D.		
8. City/Town:	9. State: 10. ZIP Code:		
11. Telephone: 12	2. Ext.: 13. FAX:		
YOU ARE SUBJECT TO AN ANNUAL COMPLIANCE ASSURANCE FEE OF UP TO \$10,000 PER BILLABLE YEAR FOR THIS DISPOSAL SITE. YOU MUST LEGIBLY COMPLETE ALL RELEVANT SECTIONS OF THIS FORM OR DEP MAY RETURN THE DOCUMENT AS INCOMPLETE. IF YOU SUBMIT AN INCOMPLETE FORM, YOU MAY BE PENALIZED FOR MISSING A REQUIRED DEADLINE.			

Date Stamp (DEP USE ONLY:)

RECEIVED

AUG 1 6 2007

DEP NORTHEAST REGIONAL OFFICE

Revised: 2/15/2005 Page 5 of 5

Revised: 02/28/2006

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup

BWSC104

RESPONSE ACTION OUTCOME (RAO) STATEMENT Pursuant to 310 CMR 40.1000 (Subpart J)

Release Tracking Number 18598 3

	For sites with multiple RTNs, enter the Primary RTN above.
A. SITE LOCATION:	
1. Site Name/Location Aid:	
2. Street Address: 12 Swanton Street	
3. City/Town: Winchester	
5. Check here if a Tier Classification Submittal has been provided. a. Tier IA b. Tier IB c. Tier IC d	ed to DEP for this disposal seRECEIVE[
6. If a Tier I Permit has been issued, provide Permit Number:	AUG 1 6 2007
3. THIS FORM IS BEING USED TO: (check all that apply)	DEP
List Submittal Date of RAO Statement (If previously submitted):	NORTHEAST REGIONAL OFFI
2. Submit a Response Action Outcome (RAO) Statement	Imidalyyyy
 a. Check here if this RAO Statement covers additional Release previously linked to a Tier Classified Primary RTN do not need 	
 b. Provide additional Release Tracking Number(s) covered by this RAO Statement. 	
3. Submit a Revised Response Action Outcome Statement	
 a. Check here if this Revised RAO Statement covers additio RAO Statement or previously submitted Revised RAO Statement Classified Primary RTN do not need to be listed here. 	
 b. Provide additional Release Tracking Number(s) covered by this RAO Statement. 	
4. Submit a Response Action Outcome Partial (RAO-P) Statem	nent
Check above box, if any Response Actions remain to be taken having the Primary RTN listed in the header section of this trans RAO-Partlal Statement for that RTN. A final RAO Statement will Statements and, if applicable, covers any remaining conditions Also, specify if you are an Eligible Person or Tenant pursuant to conduct response actions on the remaining portion(s) of the di	smittal form. This RAO Statement will record only an I need to be submitted that references all RAO-Partial not covered by the RAO-Partial Action of
a. Eligible Person b. Eligible Tenant	AUG 16 2007
5. Submit an optional Phase I Completion Statement supporting	
6. Submit a Periodic Review OpInion evaluating the status of a specified in 310 CMR 40.1051 (Section F is optional)	NORTHEAST REGIONAL OFFICE
7. Submit a Retraction of a previously submitted Response Ac	_
(All sections of this transmittal form must be fil	lied out unless otherwise noted above)

Page 1 of 7

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup

BWSC104

RESPONSE ACTION OUTCOME (RAO) STATEMENT

Release Tracking Number

3 - 18598

Pursuant to 310 CMR 40.1000 (Subpart J)

C. DESCRIPTION OF RESPONSE ACTIONS (cont.): (check all that apply; for volumes, list cumulative amounts)
18. Other Response Actions:
Describe:
19. Use of Innovative Technologies:
Describe:
D. SITE USE:
Are the response actions that are the subject of this submittal associated with the redevelopment, reuse or the major expansion of the current use of property(ies) impacted by the presence of oil and/or hazardous materials?
a. Yes b. No c. Don't know
Is the property a vacant or under-utilized commercial or industrial property ("a brownfleld property")?
a, Yes b. No c. Don't know
3. Will funds from a state or federal brownfield incentive program be used on one or more of the property(les) within the disposal site?
a. Yes b. No c. Don't know If Yes, identify program(s):
4. Has a Covenant Not to Sue been obtained or sought?
a. Yes 🗾 b. No 🗌 c. Don't know
5. Check all applicable categories that apply to the person making this submittal: a. Redevelopment Agency or Authority
b. Community Development Corporation . c. Economic Development and Industrical Corporation
d. Private Developer e. Fiduciary f. Secured Lender g. Municipality
h. Potential Buyer (non-owner) i. Other, describe:
This data will be used by MassDEP for information purposes only, and does not represent or create any legal commitment, obligation or liability on the part of the party or person providing this data to MassDEP.
E. RESPONSE ACTION OUTCOME CLASS:
Specify the Class of Response Action Outcome that applies to the disposal site, or site of the Threat of Release. Select ONLY one Class.
1. Class A-1 RAO: Specify one of the following:
a. Contamination has been reduced to background levels. b. A Threat of Release has been eliminated.
2. Class A-2 RAO: You MUST provide justification that reducing contamination to or approaching background levels is infeasible.
3. Class A-3 RAO: You MUST provide an implemented Activity and Use Limitation (AUL) and justification that reducing contamination to or approaching background levels is infeasible.
4. Class A-4 RAO: You MUST provide an Implemented AUL, justification that reducing contamination to or approaching background levels is infeasible, and justification that reducing contamination to less than Upper Concentration Limits (UCLs) 15 feet below ground surface or below an Engineered Barrier is infeasible. If the Permanent Solution relies upon an Engineered Barrier, you must provide or have previously provided a Phase III Remedial Action Plan that justifies the selection of the Engineered Barrier.

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup

BWSC104

RESPONSE ACTION OUTCOME (RAO) STATEMENT

Release Tracking Number

3

18598

Pursuant to 310 CMR 40.1000 (Subpart J)

G. LSP SIGNATURE AND STAMP:

I attest under the pains and penalties of perjury that I have personally examined and am familiar with this transmittal form, including any and all documents accompanying this submittal. In my professional opinion and judgment based upon application of (i) the standard of care in 309 CMR 4.02(1), (ii) the applicable provisions of 309 CMR 4.02(2) and (3), and 309 CMR4.03(2), and (iii) the provisions of 309 CMR 4.03(3), to the best of my knowledge, information and belief,

> if Section B indicates that either an RAO Statement, Phase I Completion Statement and/or Periodic Review Opinion is being provided, the response action(s) that Is (are) the subject of this submittal (i) has (have) been developed and implemented in accordance with the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, (ii) is (are) appropriate and reasonable to accomplish the purposes of such response action(s) as set forth in the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, and (iii) comply(les) with the identified provisions of all orders, permits, and approvals identified in this submittal.

I am aware that significant penalties may result, including, but not ilmited to, possible fines and imprisonment, if I submit information which I know to be false, inaccurate or materially incomplete.

1. LSP #:	•
2. First Name: Thomas	3. Last Name: Simmons
4. Telephone: (781) 721-4455 5. Ext.: _	6. FAX:
7. Signature	FAITH OF MASSA
8. Date: 08 16 2007 mm/dd/yyyy	9. LSP Stamp: THOMAS P. Ma. 1698 THOMAS TH
H. PERSON MAKING SUBMITTAL:	b. change of address c. change in the person
Check all that apply:	b. change of address undertaking response actions
3. Contact First Name: John	4. Last Name: Bossi
5. Street: 12 Swanton Street	6. Title: Trustee/Not Personally
7. City/Town: Winchester	8. State: MA 9. ZIP Code: 01890
10. Telephone: (781) 721-0162	12. FAX:
,	

Revised: 02/28/2006

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup

BWSC104

RESPONSE ACTION OUTCOME (RAO) STATEMENT

Pursuant to 310 CMR 40.1000 (Subpart J)

Release Tracking Number 3 - 18598

K. CERTIFICATION OF PERSON MAKING SUBMITTAL:			
1.1, John Bossi , attest under the	pains and penalties of	perjury (i) that i have personally	
examined and am familiar with the information contained in this submit	tal, including any and a	all documents accompanying this	
transmittal form, (ii) that, based on my inquiry of those individuals imme	diately responsible for	obtaining the information, the	
material information contained in this submittal is, to the best of my kno			
that I am fully authorized to make this attestation on behalf of the entity lo			
entity on whose be half this submittal is made am/is aware that there ar			
possible fines and imprisonment, for willfully submitting false, inaccura	te or incomplete infor	nation	
. //	- '		
2. By: Signature		Trustee/Not Personally	
2. By: (1)	3. Title:	Trustee/Not Personally	
Signature			
V 0		- 2/1/2	
4. For: Bossi Realty Trust (Name of person or entity recorded in Section H)	5 Date:	OX1161300_	
(Name of person or entity recorded in Section H)	o. Date:	mm/dd/ssay	
(Name of person of entry recorded in econosity)		, mindayyyy	
6. Check here if the address of the person providing certification is	different from address	recorded in Section H.	
7. Street:			
8. City/Town: 9.	State:	10. ZIP Code:	
	4.4.4		
11. Telephone: 12. Ext.:	13 FAY		
TI. Telephone.			
VOLUME AND JEST TO AN ANNUAL CONDUCTION			
YOU ARE SUBJECT TO AN ANNUAL COMPLIANCE A		•	
BILLABLE YEAR FOR THIS DISPOSAL SITE. YOU MUST LEGIBLY COMPLETE ALL RELEVANT			
SECTIONS OF THIS FORM OR DEP MAY RETURN THE DOCUMENT AS INCOMPLETE. IF YOU			
SUBMIT AN INCOMPLETE FORM, YOU MAY BE PENALI	ZED FOR MISSING A RE	EQUIRED DEADLINE.	
Date Stame (DED LISE ONLY:)			
Date Stamp (DEP USE ONLY:)			

RECEIVED

AUG 1 6 2007

DEP NORTHEAST REGIONAL OFFICE

RECEIVED

AUG 16 2007

DEP

PHASE IV COMPLETION REPORT & CLASS CARACCE C **CLASS C-2 RAO STATEMENT** BOSSI REALTY TRUST 12 SWANTON STREET WINCHESTER, MA RTN 3-18598

RECEIVED

PREPARED FOR:

Bossi Realty Trust 12 Swanton Street Winchester, MA 01890 AUG 1 & 2007

DEP NORTHEAST REGIONAL OFFICE

PREPARED BY:

Remediation & Environmental Management Services, Inc. 35 Winthrop Street Winchester, MA 01890 781-721-4455

August 16, 2007

TABLE OF CONTENTS

Section		Page
1.0 In	troduction	4
2.0 Si	te Description	4
2.1	Property Abutters	4
2.2	Topography	4
2.3	Natural Resources	4
3.0 R	elease Description (RTN 3-18598)	5
3.1	Regulatory History	5
3.2	IRA Activities	6
3.2.1	Sampling and Disposal of Stockpiled Soil	6
3.2.2	Subsurface Exploration Activities	6
3.2.3	Ground Water Monitoring Well Installation and Sampling	6
3.3	Soil Analytical Results	7
3.3.1	VPH Fractions	7
3.3.2	VPH Target Analytes	7
3.3.3	EPH Fractions	8
3.3.4	EPH Target Analytes	8
3.4	Ground Water Analytical Results	8
3.4.1	VPH Fractions	8
3.4.2	VPH Target Analytes	8
3.4.3		9
3.4.4	EPH Target Analytes	9
4.0 P	hase II Comprehensive Site Assessment	9
4.1	Site Geology	10
4.1 .1	Bedrock Geology	10
4.1.2	Regional Hydrogeology	10
4.2	Site Hydrogeology	10
4.3	Jar Headspace Screening Results	11
4.4	Phase II VPH Soil Analytical Results	11
4.4.1		11
4.4.2	EPH Fractions	12
4.4.3	EPH Target Analytes	12
5.0 P	hase II Ground Water Sampling and Analysis	12
5.1	Monitoring Well Gauging	12
5.2	Ground Water Sampling	13
5.3	April 2005 Ground Water VEPH Analytical Results	13
5.3.1	· · · · · · · · · · · · · · · · · · ·	13
5.3.2		13
5.3.3		14
5.4	December 2006 Ground Water VEPH Analytical Results	14
5.4.1		14
5.4.2	EPH Fractions	14

TABLE OF CONTENTS (Continued)

Section	Page
5.4.3 EPH Target Analytes	15
6.0 July 2007 Soil Gas Survey	15
6.1 Soil Gas Survey – Northern Property Boundary	15
6.2 Soil Gas Survey – Western Property Boundary	15
6.3 Soil Gas Point SG-25	16
6.3.1 APH Analytical Results	· 16
7.0 Migration Pathways and Exposure Potential	17
7.1 Soil	17
7.2 Ground Water	17
7.3 Surface Water	17
7.4 Air	18
8.0 Exposure Points and Exposure Point Concentrations	18
8.1 Soil Exposure Points	. 18
8.1.1 Soil Exposure Point Concentrations	19
8.2 Ground Water Exposure Points	19
8.2.1 Ground Water Exposure Point Concentrations	20
9.0 Method 1 Risk Characterization	21
9.1 Soil Categorization	21
9.2 Groundwater Categorization	22
9.3 Established Background	22
9.4 Soil EPC Comparison to Method 1 Standards	22
9.4.1 Soil VPH EPC Comparison to Method 1 Standards	23
9.4.2 Soil EPH EPC Comparison to Method 1 Standards	23
9.5 Ground Water EPC Comparison to Method 1 Standards	23
9.5.1 VPH Fractions Comparison to Method 1 Standards	23
9.5.2 VPH Target Analytes Comparison to Method 1 Standards	23
9.5.3 EPH Fractions Comparison to Method 1 Standards	23
9.5.4 EPH Target Analytes Comparison to Method 1 Standards	23
10.0 Indoor Air Exposure Risk Assessment	23
11.0 Imminent Hazard Evaluation	24
12.0 Substantial Hazard Assessment	25
13.0 Feasibility of Achieving a Permanent Solution	25
13.1 Post-Class C Ground Water Monitoring Schedule	26
13.2 Contingency Criteria	26
14.0 Conclusions	26
15.0 Limitations	28
16.0 List of References	28

Tables

Table 1 – Soil Analytical Results
Table 2 - Ground Water Analytical Results
Table 3 – Soil Gas Survey Results
Table 4 – Soil Gas Analytical Results

Remediation & Environmental Management Services, Inc.

TABLE OF CONTENTS (Continued)

Figures

Figure 1 - Site Locus

Figure 2 - Site Plan

Figure 3 – Soil VPH Distribution

Figure 4 - Ground Water VPH Distribution

Figure 5 – Site Abutters Map

Appendices

Appendix I - Soil Boring Logs and Monitoring Well Installation Reports Appendix II - Laboratory Analytical Data Sheets Appendix III - Web Engineering, Inc. Analytical Data Sheets

1.0 Introduction

Remediation & Environmental Management Services, Inc. (REMSERV, Inc.) has prepared a Phase IV Completion Statement (Phase IV) and Class C-2 RAO Statement for a historical gasoline release at 12 Swanton Street in Winchester, MA on behalf of Bossi Realty Trust associated with Release Tracking Number (RTN) 3-18958 (Figure 1). REMSERV, Inc. conducted a Method 1 Risk Characterization to assess the potential existence of a "Condition of No Significant Risk of harm to health, safety, public welfare and the environment" (310 CMR 40.0900).

2.0 Site Description

The site is located at 12 Swanton Street in Winchester, MA (UTM coordinates 4702910 mN, 324875 mE (Figure 1). The site is currently occupied by an automotive repair and used car sales facility. The site formerly dispensed gasoline and diesel fuel. The property consists of an 1,806 square foot building on a 0.31-acre lot (1) (Figure 2). The site is entirely asphalt paved except for landscaped islands located in the northeast and southwest of the property and a smaller landscaped island located in the northwest of the site. The site building is connected to municipal water and sanitary sewer. Nearby residents are also on the municipal water and sanitary system (2).

2.1 Property Abutters

The property abutters are as follows (Figure 5):

North: Swanton Street. Residential properties are located on the opposite (north) side of Swanton Street

from the site.

South: A commercial parking lot. Residential properties are located on the opposite (south) side of the

parking lot from the site.

East: A commercial building, including a convenience store, a laundromat and a photographic developing

facility. Washington Street bounds the commercial property to the east.

West: A commercial building, including a dry cleaning facility and an Italian restaurant.

2.2 Topography

The site is located at an elevation of approximately 49 feet above Mean Sea Level (based upon the National Geodetic Vertical Datum of 1929). The topography is relatively flat with a mild grade from east to west. Regionally, the topography to the east rises sharply in elevation culminating in the Middlesex Fells Reservation located approximately 1,224 feet east of the site. The area to the west slopes gently to the Aberjona River approximately 2,021 feet west of the site (Figure 1).

2.3 Natural Resources

The site is located in the Mystic River Drainage Basin. Storm water from the site is drained through a series of catch basins along the southern side of Swanton Street that discharge to the Aberjona River, located approximately 2,021 feet west of the site (Figure 1). The Aberjona River drains to the Mystic Lakes, which drain to the Mystic River and ultimately to Boston Harbor. The Mystic River is designated as a Class B Waterway (3).

Phase IV Completion & Class C-2 RAO Statement 12 Swanton Street Winchester, MA RTN 3-18598 ACOP-NE-04-3A027 8/16/07 Page 5

The site is not located within 500 feet of an Area of Critical Environmental Concern (ACEC), vernal pools, reservoirs, private wells, a mapped Zone II, a Zone A of a Class A surface water body, a priority productive aquifer, a sole source aquifer, fish habitats, or habitats of species of Special Concern or Threatened or Endangered Species (4) (Figure 1). The Middlesex Fells Reservation is located approximately 1,160 feet to the east (Figure 1). Three (3) reservoirs located within The Middlesex Fells Reservation provide drinking water to the Town of Winchester (2).

3.0 Release Description (RTN 3-18598)

In May 1999, six (6) underground storage tanks (USTs) were removed from the site under a permit issued by the Winchester Fire Department. The USTs consisted of three (3) gasoline USTs (4,000-gallon, 3,000-gallon, and 2,000-gallon), one (1) 3,000-gallon diesel UST, one (1) 500-gallon waste oil UST and one (1) 500-gallon heating oil UST.

On July 8, 1999, the MADEP Northeast Regional Office was notified of a 72-hour reportable condition at the site when a soil headspace reading exceeding 100 parts per million (ppm) was obtained from soil samples collected from within 10 feet of an underground storage tank (UST) outer wall. Approximately 20 cubic yards of soil were stockpiled when the six (6) USTs were removed from the site in May 1999. The four (4) gasoline USTs, the dispensing island, and the single 250-gallon waste oil UST were located in front of the site building (Figure 2). The 500-gallon heating oil UST was located at the rear of the building. The MADEP issued a Notice of Responsibility (NOR) dated November 19, 1999 to Bossi Realty Trust for a gasoline release associated with the UST system.

3.1 Regulatory History

The following is an annotated regulatory site history:

- On July 8, 1999, a release of petroleum was identified at the property based on elevated PID readings
 obtained from soils stockpiled at the site. The soil stockpile had been generated from the removal of six (6)
 USTs in May of 1999.
- On September 5, 1999, oral notification was provided to the MADEP by Subsurface Remediation Technologies, Inc. (SRT). The MADEP assigned Release Tracking Number (RTN) 3-18598. The MADEP issued a Notice of Responsibility to Bossi Realty Trust on November 19, 1999.
- On November 7, 2000, the MADEP issued a Notice of Noncompliance (NON) to Bossi Realty Trust for failure to submit a Release Notification Form (RNF), an Immediate Response Action (IRA) Status Report, and a Response Action Outcome (RAO) Statement or Tier Classification.
- On December 18, 2000, Bossi Realty Trust submitted an RNF and an IRA Plan in accordance with 310 CMR 40.0330 and 40.0424.
- On April 4, 2001, Bossi Realty Trust submitted an IRA Completion Statement, Phase I Initial Site
 Investigation Report, and Tier 2 Classification based on a Numerical Ranking Scoresheet total of 138 in
 accordance with 310 CMR 40.0427, 40.0480, and 40.0500.

- On May 24, 2004, the MADEP issued a Notice of NON for failure to complete and file a Phase II Report, a
 Phase III Remedial Action Plan and a Phase IV Plan within three years of the Tier II Classification.
- On January 24, 2005, REMSERV, Inc. submitted a Phase II Scope of Work along with a schedule for implementing the Phase II, the Phase III Feasibility Analysis, the Phase IV Remedial Implementation Plan and the Phase IV Completion Statement for achieving a Remedy Operation Status or Response Action Outcome.
- On March 14, 2005, the MADEP issued an Administrative Consent Order & Penalty (ACOP) (ACOP-NE-04-3A027) due to prior violations and the failure to submit a Phase II Report, a Phase III Remedial Action Plan, and/or a Phase IV Remedy Implementation Plan by required deadlines.

3.2 IRA Activities

In 2000, Subsurface Remedial Technologies (SRT) and Web Engineering Associates, Inc. (Web) undertook Immediate Response Action (IRA) activities to address the impacts to site soil and ground water from the petroleum release. The IRA activities consisted of the off-site recycling of the soil stockpile as well as assessment of the extent of gasoline contaminated soils and ground water at the property.

3.2.1 Sampling and Disposal of Stockpiled Soil

The UST excavation generated approximately 20 cubic yards of contaminated soil, which was stockpiled on site. On December 18, 2000 SRT collected a composite sample from the stockpile for laboratory analysis according to the soil disposal parameters of Aggregate Industries (AI) in Stoughton, MA. Based on the laboratory analytical results, the soils were transported to AI for asphalt batch recycling March 29, 2001 under a MADEP Bill of Lading (BOL).

3.2.2 Subsurface Exploration Activities

On October 13, 2000, Web observed the advancement of four (4) soil borings at the site by Soil Exploration of Leominster, MA. The borings were completed at depths ranging from 16 to 19 feet, approximately five (5) to eight (8) feet below the water table. Soil samples were screened with a photoionization detector (PID) using the jar headspace method (5). One (1) soil sample from each boring was submitted to Groundwater Analytical in Buzzards Bay, MA (GWA) for laboratory analysis according to the MADEP Volatile Petroleum Hydrocarbon (VPH) and Extractable Petroleum Hydrocarbons (EPH) analytical methods. The soil sample from soil boring MW-2 (10-12 feet) was analyzed for EPH only.

3.2.3 Ground Water Monitoring Well Installation and Sampling

Four (4) soil borings advanced on October 13, 2000 were completed as ground water monitoring wells (MW-1 through MW-4). On October 24, 2000, Web collected ground water samples from MW-1, MW-3 and MW-4. Web did not sample monitoring well MW-2 as a tow truck destroyed the monitoring well prior to sampling. Web used an oil/water interface probe to gauge water levels and check for the presence of Light Non-Aqueous Phase Liquid (LNAPL) in the wells. Web did not identify LNAPL in any of the wells during

Phase IV Completion & Class C-2 RAO Statement 12 Swanton Street Winchester, MA RTN 3-18598 ACOP-NE-04-3A027 8/16/07 Page 7

the October 24, 2000 ground water monitoring event. Web submitted three (3) ground water samples to Groundwater Analytical of Buzzard's Bay, MA for laboratory analysis according to the MADEP VPH and EPH Methods.

3.3 Soil Analytical Results

REMSERV, Inc. reviewed the soil analytical results from Web subsurface exploration activities conducted on October 13, 2000 (6). REMSERV, Inc. has summarized the analytical results on Table 1 and has attached the analytical data sheets in Appendix III. Web recorded elevated PID readings in the soil samples:

MW-1 (15 to 17 feet) 16.0 ppm
 MW-2 (zero to two feet) 4.6 ppm
 MW-3 (15 to 17 feet) >1,000 ppm
 MW-4 (15 to 15.5 feet) >1,000 ppm

Web submitted three (3) soil samples collected from 10 to 12 feet bgs (MW-1 (10'-12'), MW-2 (10'-12'), and MW-3 (10'-12')), and one soil sample collected from greater than 15 feet bgs (MW-4 (15'-15.5')). The soil sample MW-3 (10-12') did not exhibit the greatest PID reading of samples collected from boring MW-3.

3.3.1 VPH Fractions

- C5-C8 aliphatics were identified in soil samples MW-3 (10'-12') and MW-4 (15'-15.5') at concentrations of 2 mg/kg and 2,100 mg/kg, respectively;
- C9-C12 aliphatics were identified in MW-1 (10'-12') and MW-3 (10'-12') at concentrations of 1.9 mg/kg and 2.2 mg/kg, respectively; and
- C9-C10 aromatics were identified in soil samples MW-3 (10'-12') and MW-4 (15'-15.5') at concentrations of 1.4 mg/kg and 2,400 mg/kg, respectively.

No VPH fractions were identified in any other soil samples at concentrations exceeding laboratory minimum detection limits (Table 1).

3.3.2 VPH Target Analytes

- Toluene was identified in soil sample MW-4 (15'-15.5') at a concentration of 470 mg/kg;
- Ethylbenzene was identified in soil sample MW-4 (15'-15.5') at a concentration of 170 mg/kg);
- Total xylenes were identified in soil sample MW-4 (15'-15.5') at a concentration of 880 mg/kg;
- Naphthalene was identified in soil sample MW-4 (15'-15.5') at a concentration of 60 mg/kg; and
- Methyl tert-butyl ether (MTBE) was identified in soil sample MW-4 (15'-15.5') at a concentration of 10 mg/kg;

No other VPH target analytes were identified in any other soil samples at concentrations exceeding laboratory minimum detection limits (Table 1).

Phase IV Completion & Class C-2 RAO Statement 12 Swanton Street Winchester, MA RTN 3-18598 ACOP-NE-04-3A027 8/16/07 Page 8

3.3.3 EPH Fractions

- C9-C18 aliphatics were identified in soil sample MW-4 (15'-15.5') at a concentration of 350 mg/kg; and
- C11-C22 aromatics were identified in soil sample MW-4 (15'-15.5') at a concentration of 120 mg/kg.

No other EPH fractions were identified at concentrations exceeding laboratory minimum detection limits (Table 1).

3.3.4 EPH Target Analytes

- 2-methylnaphthalene was identified in soil sample MW-4 (15'-15.5') at a concentration of 26 mg/kg; and
- Naphthalene was identified in soil sample MW-4 (15'-15.5') at a concentration of 29 mg/kg.

No other EPH target analytes were identified at concentrations exceeding laboratory minimum detection limits.

3.4 Ground Water Analytical Results

On October 24, 2000, Web collected three ground water samples for laboratory analysis according to the MADEP VPH and EPH Methods. The results of the laboratory analysis are summarized in Table 2 and the analytical data sheets are attached as Appendix III.

3.4.1 VPH Fractions

- C5-C8 aliphatics were identified in monitoring wells MW-1 (1,400 ug/L), MW-3 (30,000 ug/L), and MW-4 (2,440 ug/L);
- C9-C12 aliphatics were identified in monitoring wells MW-1 (340 ug/L), MW-3 (21,000 ug/L), and MW-4 (5,450 ug/L); and
- C9-C10 aromatics were identified in monitoring wells MW-1 (440 ug/L), MW-3 (17,000 ug/L), and MW-4 (10,700 ug/L).

3.4.2 VPH Target Analytes

- Benzene was identified in monitoring wells MW-1 (11 ug/L), MW-3 (1,900 ug/L), and MW-4 (1,900 ug/L);
- Toluene was identified in monitoring wells MW-1 (40 ug/L), MW-3 (23,000 ug/L), and MW-4 (41,000 ug/L);
- Ethylbenzene was identified in monitoring wells MW-1 (37 ug/L), MW-3 (4,500 ug/L), and MW-4 (6,200 ug/L);
- Total xylenes were identified in monitoring wells MW-1 (138 ug/L), MW-3 (24,200 ug/L), and MW-4 (8,030 ug/L);
- Naphthalene was identified in monitoring wells MW-3 (830 ug/L) and MW-4 (1,100 ug/L); and
- MTBE was identified in monitoring wells MW-1 (16 ug/L) and MW-4 (3,500 ug/L).

No other VPH target analytes were identified in ground water at concentrations exceeding laboratory minimum detection limits (Table 2).

3.4.3 EPH Fractions

- C9-C18 aliphatics were identified in monitoring wells MW-3 (1,500 ug/L) and MW-4 (1,300 ug/L); and
- C11-C22 aromatics were identified in monitoring wells MW-3 (630 ug/L) and MW-4 (800 ug/L).

No other EPH fractions were identified at concentrations exceeding laboratory minimum detection limits (Table 2).

3.4.4 EPH Target Analytes

- 2-methylnaphthalene was identified in monitoring wells MW-1 (1.4 ug/L), MW-3 (140 ug/L), and MW-4 (170 ug/L);
- Fluorene was identified in monitoring wells MW-3 (1.4 ug/L), and MW-4 (1.3 ug/L);
- Phenanthrene was identified in monitoring wells MW-3 (1.1 ug/L), and MW-4 (1.7 ug/L); and
- Naphthalene was identified in monitoring wells MW-1 (2.3 ug/L), MW-3 (170 ug/L), and MW-4 (280 ug/L).

No other EPH Target Analytes were identified at concentrations exceeding laboratory minimum detection limits (Table 2).

4.0 Phase II Comprehensive Site Assessment

On February 28, 2005, Expedition Drilling of Atkinson, NH completed six (6) soil borings (B101, B102, B102A, B102B, B103, and B104) at the site to further assess the extent of petroleum impacted soils and to assess the current ground water conditions (Figure 2). The borings were advanced using a Mobile B53 ATV equipped with a 4¼-inch hollow stem auger and a 1 7/8-inch spilt spoon sampler. Samples were collected using a two-foot long split-spoon sampler driven by a 140 lb hammer. Soil borings B101, B102B, B103, and B104 were completed as ground water monitoring wells constructed of 2-inch diameter Schedule 40 PVC pipe with a 0.01-inch slot screened section (Figure 2). The soil boring logs and monitoring well reports are provided in Appendix I.

A REMSERV, Inc. representative was present during the subsurface exploration event to record soil conditions and collect soil samples for jar headspace PID screening. The REMSERV, Inc. representative also observed the monitoring well installations. Soil samples were field screened for the presence of total volatile organic compounds (TVOCs) using a Thermo Environmental 580B Photoionization Detector (PID) calibrated to a benzene standard (10.0 eV lamp) and the jar headspace method (5).

REMSERV, Inc. selected four (4) soil samples (B101 S4 13-15, B102 S1B 11.5-12, B103 S1 13-15, and B104 S1 13-15) for laboratory analysis according to the MADEP VPH and EPH Methods at Spectrum Analytical in Agawam, MA. The soil samples were selected based on field PID readings, depth to ground water, the location of the sample relative to source areas, and the location and type of potential receptors. Soil samples were placed in laboratory-prepared containers, chilled, and transported to the laboratory under

the Chain of Custody. The soil analytical results are summarized in Table 1 and laboratory analytical data sheets are attached as Appendix II. The soil VPH distribution is illustrated on Figure 3.

4.1 Site Geology

Soil borings B101 through B104 were advanced to refusal. Soil boring B101 was terminated at a depth of 16.5 feet below ground surface, and soil samples were collected between five (5) and 16.5 feet. Borings B102 and B102A were terminated at shallow depths due to refusal. Boring B102B was advanced to 12 feet before meeting refusal. A soil sample was collected from 10 to 12 feet in B102B. Boring B103 was terminated at 15 feet and a soil sample was collected from 13 to 15 feet. Boring B104 was terminated at 16 feet and soil samples were collected from 13 to 16 feet.

Based on the Webb Engineering and REMSERV, Inc. observations, the site geology from ground surface ranges from coarse to fine sand to silty fine sand with some to little silt, some to little gravel, and little to trace clay. The Webb site investigation characterized the site soils as silty fine sand and gravel fill to depths of approximately six (6) to eight (8) feet overlying dense glacial till (6). REMSERV, Inc. observed a layer of tan medium to fine sand with little silt and little coarse sand from five (5) to 10 feet in B101. The same soil type exhibited little gravel and trace clay at a depth of eight (8) to 10 feet in this boring. Soils below 13 feet in all REMSERV, Inc. borings consisted of brown to black coarse to fine sand and silty sand with little to trace clay and some to trace gravel.

4.1.1 Bedrock Geology

Bedrock was not identified at the site during soil exploration. The bedrock beneath the site is mapped as part of the Milford-Dedham Zone (7). The bedrock in the vicinity of the site includes gray granite to granodiorite, quartzite, schist, cal-silicate quartzite, amphibolite, metamorphosed mafic to felsic flow, and volcaniclastic and hypabyssal intrusive rocks (7).

4.1.2 Regional Hydrogeology

The site is located in the Mystic River Drainage Basin (8). Three (3) water supply reservoirs that service the Town of Winchester within a mile east of the site are topographically and hydrologically upgradient of the site. Storm water from the site is drained through catch basins located on Swanton Street, which discharge to the Aberjona River located west of the site.

4.2 Site Hydrogeology

The depth to ground water within the disposal site was gauged between 11.83 feet and 13.08 feet below ground surface during the August 10, 2007 ground water monitoring event. REMSERV, Inc. contoured water table elevations from the August 10, 2007 event to approximate the slope of the water table surface and the direction of ground water flow. The water table slopes to the northwest at a gradient of approximately 0.0101 foot/foot (Figure 2).

Hydraulic conductivity testing was not conducted as part of the Phase II Scope of Work but published values for coarse to fine sand aquifers are approximately 2.84 ft/day (9).

Phase IV Completion & Class C-2 RAO Statement 12 Swanton Street Winchester, MA RTN 3-18598 ACOP-NE-04-3A027 8/16/07 Page 11

 $V_s = K_h dh$ $\eta_e dl$

where;

V_s = seepage velocity

K_h = horizontal hydraulic conductivity = 2.84 ft/day

 η_e = effective porosity = 0.25

dh/dl = hydraulic gradient = 0.0101 foot/foot

REMSERV, Inc. calculated an approximate ground water flow velocity of 0.115 ft/day or 41.98 ft/year.

4.3 Jar Headspace Screening Results

REMSERV, Inc. field screened soil samples collected during subsurface exploration using a Thermoelectron 580B PID in accordance with the jar headspace method (5). The jar headspace screening identified elevated TVOC readings in soils collected at depths from 13 to 16.5 feet below ground surface in soil borings B101 (376 ppmV), B103 (520 ppmV), and B104 (144.9 ppmV).

4.4 Phase II VPH Soil Analytical Results

- C5-C8 aliphatics were identified in soil samples B101 S4 13-15 (16.4 mg/kg), B103 S1 13-15 (639 mg/kg), and B104 S1 13-15 (1,130 mg/kg);
- C9-C12 aliphatics were identified in soil samples B101 S4 13-15 (6.08 mg/kg), B103 S1 13-15 (217 mg/kg), and B104 S1 13-15 (350 mg/kg); and
- C9-C10 aromatics were identified in soil samples B101 S4 13-15 (8.66 mg/kg), B103 S1 13-15 (280 mg/kg), and B104 S1 13-15 (216 mg/kg).

No VPH fractions were identified in soil sample B102 S1B 11.5-12 at concentrations exceeding laboratory minimum detection limits (Table 1).

4.4.1 VPH Target Analytes

- Benzene was identified in soil sample B103 S1 13-15 at a concentration of 1.75 mg/kg;
- Toluene was identified in soil samples B101 S4 13-15 (0.14 mg/kg), B103 S1 13-15 (39.6 mg/kg), and B104 S1 13-15 (5.99 mg/kg);
- Ethylbenzene was identified in soil samples B103 S1 13-15 (24.2 mg/kg) and B104 S1 13-15 (2.72 mg/kg);
- Total xylenes were identified in soil samples B103 S1 13-15 (127.8 mg/kg) and B104 S1 13-15 (11.72 mg/kg); and
- Naphthalene was identified in soil samples B101 S4 13-15 (0.332 mg/kg), B103 S1 13-15 (9.55 mg/kg), and B104 S1 13-15 (5.82 mg/kg).

No other VPH target analytes were identified in soil samples at concentrations exceeding laboratory minimum detection limits (Table 1).

4.4.2 EPH Fractions

- C9-C18 aliphatics were identified in soil samples B103 S1 13-15 (43.3 mg/kg) and B104 S1 13-15 (129 mg/kg); and
- C11-C22 aromatics were identified in soil samples B103 S1 13-15 (40.6 mg/kg) and B104 S1 13-15 (57.3 mg/kg).

No other EPH fractions were identified at concentrations exceeding laboratory minimum detection limits (Table 1).

4.4.3 EPH Target Analytes

- 2-methylnaphthalene was identified in soil samples B101 S4 13-15 (0.162 mg/kg), B103 S1 13-15 (3.99 mg/kg), and B104 S1 13-15 (1.66 mg/kg); and
- Naphthalene was identified in soil samples B103 S1 13-15 (3.92 mg/kg) and B104 S1 13-15 (0.642 mg/kg);

No other EPH target analytes were identified at concentrations exceeding laboratory minimum detection limits (Table 1).

5.0 Phase II Ground Water Sampling and Analysis

In April 2005 and December 2006 REMSERV, Inc. conducted a ground water sampling event at the 12 Swanton Street property. On August 10, 2007 REMSERV, Inc. conducted a ground water gauging event at the 12 Swanton Street property.

On April 1, 2005, REMSERV, Inc. gauged water levels and collected ground water samples from the four (4) monitoring wells installed in February 2005 (B101-MW, B102B-MW, B103-MW, and B104-MW) and from two (2) previously installed monitoring wells (MW-1 and MW-4).

On December 19, 2006 REMSERV, Inc. gauged water levels and collected ground water samples from five (5) monitoring wells installed at the site (MW-1, MW-4, B101-MW, B103-MW, and B104-MW). A ground water sample was not collected from B102B-MW since it was dry during this sampling event.

On August 10, 2007 REMSERV, Inc. gauged water levels and conducted a rod and level survey of seven (7) monitoring wells on site (B101-MW, B102B-MW, B103-MW, B104-MW, MW-1 and MW-4).

5.1 Monitoring Well Gauging

Prior to sampling, each well was gauged for the depth to ground water and the potential the presence of light non-aqueous phase liquids (LNAPL) using a Heron H.01L Interface Meter. REMSERV, Inc. rinsed the probe tip with methanol prior to entry into each well. The depth to water was gauged between 9.99 and 11.35 feet below ground surface in April 2005, from 11.15 to 12.37 feet in December 2006 and from 11.83 to 13.08 feet in August 2007 (Table 2). REMSERV, Inc. did not identify LNAPL during the April 1, 2005, December 19, 2006, or August 10, 2007 ground water monitoring events.

5.2 Ground Water Sampling

REMSERV, Inc. evacuated a minimum of three (3) well volumes prior to ground water sample collection using a Geotech Geopump 2 peristaltic pump, dedicated polyethylene tubing, and low-flow sampling technique (less than 0.3 liters per minute) (10). Ground water samples were placed in laboratory prepared containers, chilled, and transported to Spectrum (April 2005) and/or Alpha Woods Hole Analytical Laboratories (Alpha)(December 2006) under the Chain of Custody for VPH and EPH Method analyses (VEPH). Ground water analytical results are summarized in Table 2 and laboratory analytical data sheets are attached as Appendix II. The ground water VPH distribution is illustrated on Figure 4.

5.3 April 2005 Ground Water VEPH Analytical Results

- C5-C8 aliphatics were identified in monitoring wells MW-1 (753 ug/L), MW-4 (22,400 ug/L), B101-MW (1,110 ug/L), B102B-MW (4,620 ug/L), B103-MW (17,400 ug/L), and B104-MW (8,890 ug/L);
- C9-C12 aliphatics were identified in monitoring wells MW-1 (159 ug/L), MW-4 (5,830 ug/L), B101-MW (1,110 ug/L), B102B-MW (2,250 ug/L), B103-MW (2,560 ug/L), and B104-MW (1,520 ug/L); and
- C9-C10 aromatics were identified in monitoring wells MW-1 (300 ug/L), MW-4 (16,200 ug/L), B101-MW (4,230 ug/L), B102B-MW (6,910 ug/L), B103-MW (8,950 ug/L), and B104-MW (3,750 ug/L).

5.3.1 VPH Target Analytes

- Benzene was identified in monitoring wells MW-I (11.4 ug/L), B102B-MW (230 ug/L), B103-MW (168 ug/L), and B104-MW (36.8 ug/L);
- Toluene was identified in monitoring wells MW-1 (12.4 ug/L), MW-4 (1,950 ug/L), B101-MW (7.2 ug/L), B102B-MW (1,600 ug/L), B103-MW (4,560 ug/L), and B104-MW (338 ug/L);
- Ethylbenzene was identified in monitoring wells MW-1 (26.8 ug/L), MW-4 (4,480 ug/L), B101-MW (58.5 ug/L), B102B-MW (680 ug/L), B103-MW (1,790 ug/L), and B104-MW (843 ug/L);
- Total xylenes were identified in monitoring wells MW-1 (60.4 ug/L), MW-4 (25,140 ug/L), B101-MW (224.3 ug/L), B102B-MW (4,470 ug/L), B103-MW (8,570 ug/L), and B104-MW (2,860 ug/L);
- Naphthalene was identified in monitoring wells MW-1 (10.8 ug/L), MW-4 (1,090 ug/L), B101-MW (92.4 ug/L), B102B-MW (368 ug/L), B103-MW (392 ug/L), and B104-MW (181 ug/L); and
- MTBE was identified in monitoring wells B102B-MW (87.4 ug/L) and B104-MW (38.6 ug/L).

No other VPH target analytes were identified at concentrations exceeding laboratory minimum detection limits (Table 2).

5.3.2 EPH Fractions

- C9-C18 aliphatics were identified in monitoring wells MW-4 (4,200 ug/L), B101-MW (300 ug/L), B102B-MW (400 ug/L), B103-MW (2,400 ug/L), and B104-MW (400 ug/L); and
- C11-C22 aromatics were identified in monitoring wells MW-4 (400 ug/L), B101-MW (600 ug/L), B102B-MW (500 ug/L), B103-MW (600 ug/L), and B104-MW (400 ug/L).

Phase IV Completion & Class C-2 RAO Statement 12 Swanton Street Winchester, MA RTN 3-18598 ACOP-NE-04-3A027 8/16/07 Page 14

No other EPH fractions were identified at concentrations exceeding laboratory minimum detection limits (Table 2).

5.3.3 EPH Target Analytes

- 2-methylnaphthalene was identified in monitoring wells MW-4 (108 ug/L), B101-MW (96.3 ug/L), B102B-MW (30.6 ug/L), B103-MW (105 ug/L), and B104-MW (48.3 ug/L); and
- Naphthalene was identified in monitoring wells MW-4 (379 ug/L), B101-MW (44.5 ug/L), B102B-MW (114 ug/L), B103-MW (165 ug/L), and B104-MW (88.1 ug/L).

No other EPH target analytes were identified at concentrations exceeding laboratory minimum detection limits (Table 2).

5.4 December 2006 Ground Water VEPH Analytical Results

- C5-C8 aliphatics were identified in monitoring wells MW-1 (370 ug/L), MW-4 (2,440 ug/L), B101-MW (683 ug/L), B103-MW (4,940 ug/L), and B104-MW (1,690 ug/L);
- C9-C12 aliphatics were identified in monitoring wells MW-1 (229 ug/L), MW-4 (5,450 ug/L), B101-MW (247 ug/L), B103-MW (2,950 ug/L), and B104-MW (777 ug/L); and
- C9-C10 aromatics were identified in monitoring wells MW-1 (111 ug/L), MW-4 (10,700 ug/L), B101-MW (725 ug/L), B103-MW (3,920 ug/L), and B104-MW (1,830 ug/L).

5.4.1 VPH Target Analytes

- Benzene was identified in monitoring well B103-MW at a concentration of 68.6 ug/L;
- Toluene was identified in monitoring wells MW-4 (103 ug/L), B103-MW (2,570 ug/L), and B104-MW (43.2 ug/L);
- Ethylbenzene was identified in monitoring wells MW-4 (1,430 ug/L), B101-MW (4.42 ug/L), B103-MW (1,330 ug/L), and B104-MW (329 ug/L);
- Total xylenes were identified in monitoring wells MW-4 (8,030 ug/L), B103-MW (5,170 ug/L), and B104-MW (1,160 ug/L); and
- Naphthalene was identified in monitoring wells MW-4 (594 ug/L) and B103-MW (253 ug/L).

No other VPH target analytes were identified at concentrations exceeding laboratory minimum detection limits (Table 2).

5.4.2 EPH Fractions

C11-C22 aromatics were identified in monitoring wells MW-4 (277 ug/L), B101-MW (194 ug/L), B103-MW (191 ug/L), and B104-MW (157 ug/L).

No other EPH fractions were identified at concentrations exceeding laboratory minimum detection limits (Table 2).

5.4.3 EPH Target Analytes

- 2-methylnaphthalene was identified in monitoring wells MW-4 (106 ug/L), B101-MW (11.3 ug/L), B103-MW (48.5 ug/L), and B104-MW (39.3 ug/L);
- Naphthalene was identified in monitoring wells MW-1 (0.569 ug/kg), MW-4 (275 ug/L), B101-MW (6.18 ug/L), B103-MW (189 ug/L), and B104-MW (71.1 ug/L).
- Phenanthrene was identified in monitoring well B101-MW at a concentration of 0.572 ug/L.
- Fluorene was identified in monitoring well B104-MW at a concentration of 0.464 ug/L.

No other EPH target analytes were identified at concentrations exceeding laboratory minimum detection limits (Table 2).

6.0 July 2007 Soil Gas Survey

REMSERV, Inc. conducted a soil gas survey based on the elevated dissolved VPH fractions and target analytes identified in ground water since 2000. The purpose of the soil gas survey was to collect data that could be used to assess the potential for soil gas to migrate to indoor air at the commercial building and the residences abutting the site to the west and north, respectively (Figure 5).

On July 13, 17, 18, and 30, 2007 REMSERV, Inc. completed 26 soil gas probes through asphalt cover along the south side of 12 Swanton Street and along the western property boundary (SG-1 through SG-25 and SG-21A) (Figure 2). The probes were completed through asphalt cover. The results of the soil gas survey are summarized in Table 3.

6.1 Soil Gas Survey - Northern Property Boundary

On July 13, 2007 REMSERV, Inc. advanced, by hand, soil gas probes SG-1 through SG-9 to approximately four (4) feet bgs using a slam bar threaded to a perforated soil probe. After attaining the desired depth the slam bar was detached and a quick-connect sampling fitting was attached to the top of the probe where it protruded from the ground. The annular space surrounding the soil probe was sealed to prevent atmospheric air from entering the soil gas probe. A MiniRae 2000 PID (10.6 eV) calibrated to a benzene standard was utilized to evacuate and screen soil gas for the presence of total volatile organic compounds (TVOCs). Each soil gas probe was monitored for an approximately three (3) minute period during which REMSERV, Inc. recorded the maximum, stabilized, and background PID readings (Table 3).

The maximum TVOC readings observed in soil gas points advanced along the northern property boundary ranged from 0.3 ppm (SG-8) to 3.2 ppm (SG-1) (Table 3). The sustained TVOC readings observed in soil gas points advanced along the northern property boundary ranged from 0.0 ppm (SG-7 and SG-8) to 0.7 ppm (SG-1). Background TVOC readings did not exceed 0.1 ppm TVOC (Table 3).

6.2 Soil Gas Survey – Western Property Boundary

On July 17 and 18, 2007 REMSERV, Inc. advanced soil gas probes SG-10 through SG-25 using one-inch diameter Geoprobe rods driven by a 30 lb. manual slide hammer. REMSERV, Inc. advanced soil gas probes SG-10 through SG-25 to approximately four (4) feet bgs prior to collecting a soil gas sample. REMSERV,

Phase IV Completion & Class C-2 RAO Statement 12 Swanton Street Winchester, MA RTN 3-18598 ACOP-NE-04-3A027 8/16/07 Page 16

Inc. utilized a Geopump 2 peristaltic pump to evacuate soil gas at a rate of 0.3 liters per minute while simultaneously monitoring the soil gas discharge using the MiniRae 2000 PID. Maximum, sustained, and background TVOC readings were recorded during the evacuation period for each soil gas point (Table 3).

The maximum TVOC readings observed in soil gas points advanced along the western property boundary ranged from 0.5 ppm (SG-9 and SG-21A) to 9.0 ppm (SG-20) (Table 3). The sustained TVOC readings observed in soil gas points advanced along the western property boundary ranged from 0.1 ppm (SG-9) to 6.1 ppm (SG-18). Background TVOC readings for soil gas points SG-13 and SG-16 through SG-20 were elevated above 1.0 ppm TVOC (Table 3).

Soil gas points SG-10 through SG-20 were advanced on July 17, 2007 during humid and rainy conditions. It is REMSERV, Inc. opinion that elevated background readings may have been the result of the instrument's (PID) sensitivity to moisture. Soil gas points SG-21 through SG-24, advanced and screened during drier conditions on July 18, 2007, identified soil gas background readings that ranged between 0.0 ppm and 0.1 ppm TVOCs.

6.3 Soil Gas Point SG-25

On July 30, 2007 REMSERV, Inc. advanced soil gas point SG-25 approximately twelve inches southeast of SG-16. REMSERV, Inc. selected this location based on elevated TVOC readings identified in SG-16 on July 17, 2007 as well as the proximity of the nearest occupied structure. REMSERV, Inc. prescreened the soil gas in SG-25 using the hand-held PID. The PID maximum, sustained, and background TVOC readings exhibited by SG-25 were 1.2 ppm, 0.8 ppm, and 0.0 ppm respectively (Table 3).

REMSERV, Inc. proceeded to collect a soil gas sample in a SUMMA canister at this location. The SUMMA canister was prepared by Alpha Analytical. REMSERV, Inc. used threaded fittings and dedicated polyethylene tubing to connect the soil gas sampling rod to a laboratory calibrated flow control regulator prepared by Alpha. The SUMMA canister was connected to the down flow side of the regulator and the flow control valve was opened. The SUMMA Canister was calibrated by Alpha for a two-hour sample collection period at a constant flow rate.

The soil gas sample was submitted to Alpha under Chain of Custody for MADEP Air Phase Hydrocarbon (APH) analysis. Pre and post sampling pressure values were recorded by Alpha (-28.7 inHg and -5.1 inHg, respectively) to ensure that an adequate soil gas volume was collected to meet APH quality control standards. The APH laboratory analytical results are summarized in Table 4 and laboratory analytical data sheets are attached as Appendix II.

6.3.1 APH Analytical Results

The APH Method analysis of soil gas sample SG-25 identified hydrocarbon fractions and target analytes at the following concentrations (Table 4):

C5-C8 aliphatics 1,590 ug/m³ C9-C12 aliphatics 11,500 ug/m³ C9-C10 aromatics 639 ug/m³

Phase IV Completion & Class C-2 RAO Statement 12 Swanton Street Winchester, MA RTN 3-18598 ACOP-NE-04-3A027 8/16/07 Page 17

MTBE

35.8 ug/m³

No other APH fractions or target analytes were identified at concentrations exceeding the laboratory minimum detection limits (Table 4).

7.0 Migration Pathways and Exposure Potential

A migration pathway is the mechanism of contaminant transport from the source to the exposure point. The VPH contaminants as a group and the target analytes are both characterized by moderate solubility, moderate vapor pressure (moderate Henry's constants) and a moderate affinity for soil attenuation in soils high in organic content. The EPH contaminants and target analytes are characterized by moderate to low solubility, moderate vapor pressure and a moderate affinity for soil attenuation in soils high in organic content. The bioattenuation and breakdown of the VPH and EPH contaminants occur primarily under aerobic conditions. The aromatic VPH range gasoline components and the aromatic EPH range diesel components are more readily biodegraded under aerobic conditions.

There are presently no direct soil contact or vapor exposure pathways to on-site workers. This is based on the depth of the contamination, low intensity site use by the human receptors at the site, and soil vapor survey results. Potential contaminant migration routes and exposure pathways are discussed below.

7.1 Soil

At present, there are no known or suspected migration pathways or exposure points through soil. Soil VPH contaminants are not readily accessible to employees or visitors because they are located at depths greater than 13 feet beneath asphalt pavement. Because the contaminants are not readily accessible, the most likely receptors would be individuals engaged in environmental remediation or utility repair.

7.2 Ground Water

At present, there are no known or suspected migration pathways or exposure points through ground water. Since there are no on-site uses of ground water, ground water ingestion is unlikely. The monitoring wells are bolted shut and fitted with expandable locking caps. Because ground water contaminants are not readily accessible, the most likely receptors would be individual contractors engaged in environmental assessment and remediation.

7.3 Surface Water

There are no surface water bodies located on site. The nearest surface water body (Aberjona River) is located approximately 2,021 feet from the site. Dissolved concentrations of C5-C8 aliphatics, C9-C10 aromatics, and total xylenes have been identified in site ground water at concentrations exceeding the GW-3 standard protective of surface water. Based on the distance of the site from the nearest surface water body it is unlikely that a migration pathway exists for dissolved contaminants identified on site to affect surface water (11).

Phase IV Completion & Class C-2 RAO Statement 12 Swanton Street Winchester, MA RTN 3-18598 ACOP-NE-04-3A027 8/16/07 Page 18

7.4 Air

Vapor-phase hydrocarbons can migrate through soil and infiltrate the living space of occupied buildings or underground utilities. On July 13, 17, 18, and 30, 2007 REMSERV, Inc. conducted a soil gas survey along the 12 Swanton Street northern and western property boundaries. The results of the soil gas survey identified maximum PID readings for TVOCs that exceeded MADEP published soil gas screening levels for the evaluation of potential indoor-air impacts when background readings were taken into account. No sustained PID readings for TVOCs exceeded the MADEP soil gas screening levels. The greatest soil gas readings were identified during rainy conditions along the western property boundary in soil gas points SG-16, SG-18, and SG-20. Background PID readings at these soil gas points were elevated at levels of 1.1 ppm, 3.8 ppm, and 2.3 ppm, respectively.

REMSERV, Inc. advanced an additional soil gas probe (SG-25) in the area of the soil gas point that exhibited the highest maximum PID reading (SG-16, taking into account elevated background TVOCs). A soil gas sample was collected from SG-25 and submitted for laboratory analysis according to the MADEP APH Method.

Based on the APH laboratory results REMSERV, Inc. concludes that a complete migration pathway is not likely to exist for dissolved contaminants along the western boundary to affect indoor air of occupied structure located to the west of the site.

Based on soil gas survey results along the northern property boundary and on the identification of dissolved contaminants at concentrations below the GW-2 standard in monitoring well B101-MW (located to the northwest and hydrologically downgradient of the former USTs) REMSERV, Inc. concludes that a complete migration pathway is not likely to exist for dissolved contaminants along the northern boundary to affect indoor air of occupied structure located to the north of the site.

8.0 Exposure Points and Exposure Point Concentrations

An exposure point is a location at which a contaminant may contact a potential receptor. REMSERV, Inc. calculated site soil exposure point concentrations (EPCs) using VPH and EPH analytical results identified during subsurface exploration events in October 2000 and February 2005. Ground water EPCs were determined based on the analytical results obtained from the most recent ground water monitoring event conducted on December 19, 2006. The ground water EPCs for monitoring well B102B-MW were assigned to laboratory analytical results obtained during the April 2005 ground water monitoring event.

8.1 Soil Exposure Points

As per 310 CMR 40.0924(2)(a)2, soil "Exposure Point(s) shall be defined by the horizontal and vertical distribution of the contaminated soil in combination with the soil category(ies) determined to be applicable." The site surface is completely covered by asphalt pavement except for two landscaped islands located in the northeast and southwest of the site and a smaller landscaped island in the northwest of the site. Petroleum-impacted soils were identified at depths greater than thirteen feet below ground surface. No contaminated soils are stockpiled at the site. Potential soil exposure points are therefore limited to contaminated soils

accessed by contractors engaged in utility repair or environmental remediation, and soil excavation associated with unforeseen future site redevelopment.

8.1.1 Soil Exposure Point Concentrations

Soil exposure point concentrations (EPCs) have been calculated to represent an average contaminant concentration that may be encountered under a potential direct contact exposure scenario.

REMSERV, Inc. calculated soil VPH and EPH EPCs using soil samples collected during subsurface exploration activities (Table 1). Samples that did not exhibit contaminant concentrations above minimum laboratory detection limits were used in EPC calculations at a concentration equal to half of the laboratory minimum detection limit.

VPH Fraction EPCs

C5-C8 aliphatics C9-C12 aliphatics C9-C10 aromatics	648.1 115.4 581.2	mg/kg mg/kg mg/kg
VPH Target Analyte EPCs		
Benzene Toluene Ethylbenzene MTBE Total xylenes Naphthalene EPH Fraction EPCs	1.8 128.9 65.6 10.0 339.8 18.9	mg/kg mg/kg mg/kg mg/kg mg/kg
EFH Fraction EFCs		
C9-C18 aliphatics C19-C36 aliphatics C11-C22 aromatics	174.1 16.3 23.4	mg/kg mg/kg mg/ka

8.2 Ground Water Exposure Points

EPH Target Analyte EPCs

2-methylnaphthalene

C9-C12 aliphatics

As per 310 CMR 40.0924(2)(a)1, ground water "Exposure Point(s) shall be the ground water resource itself, as measured at each wellhead and/or nearest tap of a well screened within the horizontal and vertical distribution of the oil and/or hazardous material in the ground water. Existing water supply wells and monitoring wells shall be used to represent current or potential ground water Exposure Points." For the

 $8.0 \, \text{mg/kg}$

11.2 mg/kg

purpose of this Class C-2 RAO Statement ground water EPCs are determined to be equivalent to the most recent analytical results for each individual monitoring well.

8.2.1 Ground Water Exposure Point Concentrations

Ground water VPH and EPH fraction and target analyte EPCs were determined using analytical results from the December 19, 2006 sampling event (Table 2). Monitoring well MW-3 EPCs were not calculated since it has been destroyed and not sampled after October 24, 2000. Monitoring well B102B-MW was not sampled during the December 19, 2006 ground water sampling event due to insufficient ground water within the monitoring well. The EPCs for this well are the April 2005 analytical results.

A decreasing trend in dissolved contaminant concentrations is evident since 2000. Since no remedial activities other than limited soil removal have been undertaken, the decreasing trend is believed to be indicative of natural attenuation processes.

The dissolved VPH fraction EPCs are as follows:

C5-C8 Aliphatics 370 ug/L (MW-1) to 4,940 ug/L (B103-MW)
C9-C12 Aliphatics 229 ug/L (MW-1) to 5,450 ug/L (MW-4)
C9-C10 Aromatics 111 ug/L (MW-1) to 10,700 ug/L (MW-4)

The VPH fraction EPCs for monitoring well B102B-MW are as follows:

 C5-C8 aliphatics
 4,620 ug/L

 C9-C12 aliphatics
 2,250 ug/L

 C9-C10 aromatics
 6,910 ug/L

The dissolved VPH target analytes EPCs are as follows:

Benzene Below laboratory reporting limits (BDL)(MW-1, MW-4, B101-MW, and

B104-MW) to 68.6 ug/L (B103-MW)

Toluene BDL (MW-1) to 2,570 ug/L (B103-MW) Ethylbenzene BDL (MW-1) to 1,430 ug/L (MW-4)

Total xylenes BDL (MW-1 and B101-MW) to 8,030 ug/L (MW-4)

MTBE One-half the laboratory minimum detection limits for all monitoring wells

Naphthalene EPCs BDL (MW-1, B101-MW, and B104-MW) to 594 ug/L (MW-4)

The dissolved VPH target analytes EPCs for monitoring well B102B-MW are as follows:

Benzene 230 ug/L Toluene 1,600 ug/L Ethylbenzene 680 ug/L MTBE 4,470 ug/L Total xylenes 87.4 ug/L Naphthalene 368 ug/L

The dissolved EPH fraction EPCs are as follows:

C11-C22 Aromatics

BDL (MW-1) to 277 (MW-4)

All other EPH fraction EPCs were assigned one-half the laboratory minimum detection limits.

The dissolved EPH target analytes EPCs are as follows:

2-methylnaphthalene BDL (MW-1) to 48.5 ug/L (B204-MW);

Fluorene BDL (MW-1, MW-4, B101-MW, and B103-MW) to 0.464 ug/L (B104-MW) Phenanthrene BDL (MW-1, MW-4, B103-MW, B104-MW) to 0.572 ug/L (B101-MW)

Naphthalene 0.569 ug/L to 275 ug/L (MW-4).

All other EPH target analyte EPCs were assigned one-half the laboratory minimum detection limits.

The dissolved EPH fraction EPCs are as follows:

C9-C18 aliphatics 400 ug/L C11-C22 aromatics 500 ug/L

All other EPH fraction EPCs were assigned one-half the laboratory minimum detection limits.

The EPH target analytes EPCs are as follows:

2-methylnaphthalene 30.6 ug/L Naphthalene 114 ug/L

All other EPH target analyte EPCs were assigned one-half the laboratory minimum detection limits.

9.0 Method 1 Risk Characterization

Under a Method 1 Risk Characterization, a condition of No Significant Risk is evaluated by comparing the soil and ground water exposure point concentrations to the applicable Method 1 standards published by the MADEP for all sites. The Method 1 Characterization was conducted using soil EPCs calculated from the subsurface exploration samples collected during in January 2004 and June 2005. The ground water EPCs represent analytical results from the most recent ground water sampling event on December 19, 2007.

9.1 Soil Categorization

The MADEP has developed soil categories based on the exposure potential to receptors (adults and children). The exposure potential is based on a combination of soil accessibility (depth, ground cover) and the frequency and intensity of site usage by receptors (310 CMR 40.0933(9), #WSC/ORS-95-141, 2.1.4). The MCP outlines three types of soil classifications, all of which may apply to different areas of a site.

Phase IV Completion & Class C-2 RAO Statement 12 Swanton Street Winchester, MA RTN 3-18598 ACOP-NE-04-3A027 8/16/07 Page 22

The frequency of use describes how often a receptor makes use of and has access to the disposal site. The frequency of use is examined for children under 15 years of age and adults. The intensity of use evaluates the site activity and uses that have the potential to disturb soil and result in direct contact or inhalation of dust-born contaminant exposure of the receptor to the disposal site. Intensity is described as either "high" or "low". The soil accessibility is described as accessible, potentially accessible or isolated. Accessible soil is located within three (3) feet of ground surface and is not completely covered with pavement. Potentially accessible soil is located up to 15 feet below ground surface in areas that are completely paved, or between three (3) and 15 feet below ground surface in unpaved areas. Isolated soil is located at a depth greater than 15 feet from ground surface or located beneath a building or other permanent structure without dirt floors.

The current and foreseeable site use is automobile repair and sales. The frequency and intensity of use by children is considered low. Approximately two (2) to three (3) adult full-time employees work at the property indicating a high frequency presence. The adult exposure intensity is low based on the contaminated soil depth of greater than thirteen feet beneath an asphalt surface layer. Based on these receptor characteristics the soils at the site have been categorized as S-3 (310 CMR 40.0933(7)).

9.2 Groundwater Categorization

The MCP describes three potential ground water categories that may be applicable to all sites. The GW-1 category includes those ground waters within a potentially productive aquifer, an Interim Wellhead Protection Area, in a Zone II of a public water supply, within 500 feet of a private drinking water well, in a Zone A of a Class A surface water body, or greater than 500 feet from a public water distribution pipeline. The GW-2 category is protective of groundwater located within 30 feet of an occupied building at an average depth of less than 15 feet from ground surface. Category GW-3 is protective of ground water that has the potential to discharge to surface water. This category pertains to all groundwater in the Commonwealth of Massachusetts.

Ground water at the site is categorized as GW-3 and GW-2. The GW-1 standard does not apply based on the absence of a drinking water well within 500 feet or a public drinking water well within 0.5 mile of the site. The GW-2 standard does not apply to monitoring well B101-MW as it is located at a distance greater than 30 feet laterally from an occupied structure.

9.3 Established Background

REMSERV Inc. compared the maximum detected concentration of Contaminants of Concern identified in site soils to available MADEP "natural" background concentrations (MADEP 2002). MADEP identified "natural" background concentrations as generally representing the high end (i.e., 90th percentile) of the concentration range observed for individual compounds in Massachusetts's soil. Contaminants not identified at concentrations exceeding laboratory minimum detection limits are considered to exist at background levels.

9.4 Soil EPC Comparison to Method 1 Standards

REMSERV, Inc. has conducted a Method 1 comparison in which the EPCs for VPH and EPH fractions and target analytes were compared to the MADEP published Method 1 standards for soil.

9.4.1 Soil VPH EPC Comparison to Method 1 Standards

The soil VPH EPCs for the VPH fraction C5-C8 aliphatics and C9-C10 aromatics exceed the Method 1 S-1 and S-3 standards. No other soil VPH fraction or target analyte EPCs exceed the applicable Method 1 S-3 standards.

9.4.2 Soil EPH EPC Comparison to Method 1 Standards

The soil EPH EPCs did not exceed any of the Method 1 standards for EPH fractions or target analytes.

9.5 Ground Water EPC Comparison to Method 1 Standards

REMSERV, Inc. conducted a Method 1 Comparison in which the EPCs for dissolved VPH and EPH fractions and target analytes were compared to the MADEP published Method 1 standards for ground water.

9.5.1 VPH Fractions Comparison to Method 1 Standards

The following VPH fractions were identified at EPCs exceeding applicable Method 1 standards:

- C5-C8 aliphatics in monitoring wells MW-4 (GW-2), B103-MW (GW-2, GW-3), B104-MW (GW-2), and B102B-MW (GW-2, GW-3);
- C9-C12 aliphatics in monitoring wells MW-4 (GW-2), B103-MW (GW-2), and B102B-MW (GW-2);
- C9-C10 aromatics in monitoring wells MW-4 (GW-2, GW-3) and B102B-MW (GW-2, GW-3).

9.5.2 VPH Target Analytes Comparison to Method 1 Standards

The VPH target analyte total xylenes was identified at EPCs exceeding applicable Method 1 standards in monitoring wells MW-4 (GW-3), B103-MW (GW-3), B104-MW (GW-3), and B102B-MW (GW-3).

No other VPH target analyte EPCs exceed applicable Method 1 standards for site ground water.

9.5.3 EPH Fractions Comparison to Method 1 Standards

No EPH fraction EPCs exceed the applicable Method 1 standards for site ground water.

9.5.4 EPH Target Analytes Comparison to Method 1 Standards

No EPH target analyte EPCs exceed applicable Method 1 standards for site ground water.

10.0 Indoor Air Exposure Risk Assessment

REMSERV, Inc. compared soil gas monitoring results for 26 locations along the 12 Swanton Street northern and western property boundaries to MADEP published threshold criteria. If soil gas readings are below the MADEP published thresholds for soil gas PID readings (Level 1) or soil gas analyses (Level 2), the MADEP

REMEDIATION & ENVIRONMENTAL MANAGEMENT SERVICES, INC.

Phase IV Completion & Class C-2 RAO Statement 12 Swanton Street Winchester, MA RTN 3-18598 ACOP-NE-04-3A027 8/16/07 Page 24

considers that indoor air impacts are unlikely (11).

REMSERV, Inc. followed the recommended procedures for "Level 2 – Soil Gas Analysis" in accordance with the procedures outlined in the MADEP Policy #WSC-02-411 dated October 31, 2002 entitled "Implementation of the MADEP VPH/EPH Approach." For the purpose of the risk assessment, 100% of the TVOC readings were attributed to each VPH fractions.

Soil gas point (SG-16) exhibited a maximum PID reading that when corrected for elevated background PID levels exceeded the MADEP published values for C5-C8 aliphatics and C9-C12 aliphatics. No other soil gas monitoring points (when corrected for elevated background PID levels) exhibited a soil gas reading that exceeded the MADEP thresholds for likely indoor air impact. REMSERV, Inc. believes that TVOC readings obtained from soil gas point SG-16 were elevated due to environmental conditions present (humidity/rain) during the July 17, 2007 soil gas survey activities.

Based on the soil gas readings in SG-16 REMSERV, Inc. advanced an additional soil gas probe (SG-25) approximately 12 inches to the southeast and closer to the source area. As a conservative estimate of potential exposure to indoor air, REMSERV, Inc. collected a soil gas sample from SG-25 for laboratory analysis according to the MADEP Air Phase Hydrocarbon (APH) Method.

The results of APH analysis did not identify any petroleum contaminants at concentrations exceeding the Soil Gas GC Screening Levels identified in Table 4-10 of MADEP Policy #WSC-02-411. As mentioned previously, the MADEP has published these threshold values to be protective of potential indoor air impacts. Based on the results of the soil gas survey and soil gas APH analysis it is REMSERV, Inc.'s opinion that the potential does not exist for dissolved contamination to affect the indoor air of the downgradient occupied structures.

11.0 Imminent Hazard Evaluation

REMSERV, Inc. conducted an evaluation of site conditions to determine if an Imminent Hazard exists at the site in accordance with 310 CMR 40.0950. As per 310 CMR 40.0006 an Imminent Hazard is "a hazard which would pose a significant risk of harm to health, safety, public welfare or the environment if it were present for even a short period of time."

The soil gas survey concentrations and the ground water concentrations for dissolved gasoline associated with RTN 3-18598 are not present at levels that would result in the "presence of oil and/or hazardous material vapors within buildings, structures, or underground utility conduits at a concentration equal to or greater than 10% of the Lower Explosive Limit," or affect a public roadway (CMR 30.0321(1)). Based on criteria established in 310 CMR 40.0321 and CMR 40.0950 REMSERV, Inc. did not identify a Condition of Imminent Hazard to safety at the site in association with RTN 3-18598.

The release did not occur within a Zone II for a drinking water supply well or within 500 feet of a private drinking water well. REMSERV, Inc. did not identify a complete soil, ground water, surface water and/or air exposure pathway at the site. Due to the lack of complete exposure pathways REMSERV, Inc. does not consider the release to pose "a significant risk to human health [...] as specified in 310 CMR 40.0950" or to "produce immediate or acute adverse impacts to freshwater or saltwater fish populations" based on current

REMEDIATION & ENVIRONMENTAL MANAGEMENT SERVICES, INC.

Phase IV Completion & Class C-2 RAO Statement 12 Swanton Street Winchester, MA RTN 3-18598 ACOP-NE-04-3A027 8/16/07 Page 25

and foreseeable site conditions (310 CMR 40.0321(1)). Based on criteria established in 310 CMR 40.0321 and CMR 40.0950 REMSERV, Inc. did not identify a condition of Imminent Hazard to health and public welfare at the site in association with RTN 3-18598.

12.0 Substantial Hazard Assessment

The extent of dissolved contamination has been identified through soil and ground water assessment in the downgradient direction. None of the soil analytical results have identified VPH fractions or target analytes that exceed the Upper Concentration Limits published by the MADEP. There are presently no on-property exposure points to contaminated soil and ground water. The site is completely paved with asphalt within the area source area except for a landscaped island along the front (north) and rear (south) of the property. The depth to contaminated soils is approximately seven (7) feet below ground surface. The analysis of off-property gasoline contamination has been assessed through soil gas sampling and analysis for the potential migration of contaminated soil vapor to indoor air at the nearest downgradient receptor. The absence of VPH contaminants in soil gas in excess of the Level 1 soil gas screening thresholds and the Level 2 Air Phase Hydrocarbon (APH) soil gas GC screening levels indicates that there is not a likelihood of threat to indoor air at the nearest downgradient receptors.

The nearest downgradient surface water body is 2,000 feet to the northeast. There are no wetlands, aquatic and terrestrial habitats, and fisheries that exist at the disposal site. Three drinking water reservoirs exist at a distance greater than one-half mile upgradient from the site at a substantially greater surface elevation.

REMSERV, Inc. has assessed the potential for a Condition of Substantial Hazard that considers the physical site conditions, the extent of the source area, the extent of media contamination and the absence of any exposure points at the site. The absence of a Condition of Substantial Hazard is based on the soil gas survey results using Level 1 soil gas screening with a field PID and Level 2 soil gas analysis with a gas chromatograph. The soil gas survey did not exceed the MADEP published thresholds for the likely impact to indoor air. As a result, REMSERV, Inc. has concluded that a Condition of Substantial Hazard does not exist at the site.

13.0 Feasibility of Achieving a Permanent Solution

In July 2005 REMSERV, Inc. conducted a Phase III Feasibility Assessment that resulted in a Remedial Action Plan. The Phase III identified soil chemical oxidation pilot test followed by ground water monitoring to assess the effectiveness of this remedial action alternative implementation on dissolved contaminant concentrations at the site. The remedial action recommendation was based on the dissolved contaminant concentrations identified in 2000 and in April 2005. A subsequent ground water sampling and analyses event in December 2006 identified a decreasing plume prior to implementation of the remedial action. Based on the decreasing dissolved concentrations of VPH contaminants it is REMSERV, Inc.'s opinion that a permanent solution may be achieved without chemical oxidation. REMSERV, Inc. will conduct Post-Class C RAO monitoring to assess the long-term behavior and to verify the conditions of a stable or decreasing plume.

Phase IV Completion & Class C-2 RAO Statement 12 Swanton Street Winchester, MA RTN 3-18598 ACOP-NE-04-3A027 8/16/07 Page 26

13.1 Post-Class C Ground Water Monitoring Schedule

REMSERV, Inc. is recommending quarterly sampling to assess the plume behavior over time and confirm that the plume is reducing in extent as evidenced by VPH laboratory analysis of ground water samples. An assessment will be made of the feasibility of achieving background after additional ground water data has been collected.

13.2 Contingency Criteria

If the dissolved concentrations decrease below the GW-3 standard consistently for all monitoring wells, REMSERV, Inc. will file a Class A-2 Response Action Outcome (RAO). In the event that dissolved concentrations persist in excess of the GW-3 standard, REMSERV, Inc. will conduct a risk assessment to consider the long-term risks associated with GW-3 exceedances at the property. If the dissolved concentrations establish an increasing trend over consecutive sampling events then REMSERV, Inc. will assess the need for injection of an oxygen-enhancing agent to stimulate the degradative capacity of the indigenous bacteria.

14.0 Conclusions

A Phase IV Completion Report (Phase IV) and Class C-2 RAO Statement has been completed for a historic release of gasoline under Release Tracking Number (RTN) 3-18598 at the 12 Swanton Street property. The Phase IV and Class C-2 RAO Statement include a Method I Risk Characterization to assess the potential existence of a "Condition of No Significant Risk of harm to health, safety, public welfare and the environment" (310 CMR 40.0900).

The property is located at 12 Swanton Street, Winchester, Massachusetts. The site is currently occupied by an automotive repair and used car sales facility. The site formerly dispensed gasoline and diesel fuel. The property consists of an 1,806 square foot building on a 0.31-acre lot. The site is not located within an Interim Wellhead Protection Area, within ½ mile of drinking water supply wells, or within a 500-foot radius of known private water supply wells. The site building and nearby residents are connected to municipal water and sanitary sewer. Residences are located on the opposite side of Swanton Street to the north and a commercial dry cleaner abuts the property to the west.

On July 8, 1999, the MADEP Northeast Regional Office was notified of a 72-hour reportable condition at the site when a soil headspace reading exceeding 100 parts per million (ppm) was obtained from soil samples collected from within 10 feet of an underground storage tank (UST) outer wall. Approximately 20 cubic yards of soil were stockpiled when six (6) USTs were removed from the site in May 1999. The four (4) gasoline USTs, the dispensing island, and the single 250-gallon waste oil UST were located in front of the site building (Figure 2). The 500-gallon heating oil UST was located at the rear of the building. The MADEP issued a Notice of Responsibility (NOR) dated November 19, 1999 to Bossi Realty Trust for a gasoline release associated with the UST system and assigned RTN 3-18598.

REMSERV, Inc. has assessed the extent of gasoline contaminated soils and ground water at the 12 Swanton Street property using the soil analytical results from October 2000 and February 2005 soil borings and the

REMEDIATION & ENVIRONMENTAL MANAGEMENT SERVICES, INC.

Phase IV Completion & Class C-2 RAO Statement 12 Swanton Street Winchester, MA RTN 3-18598 ACOP-NE-04-3A027 8/16/07 Page 27

most recent ground water sampling analytical data from December 2006. The greatest PID readings were observed in the area of the former USTs and the fuel-dispensing island. The soil analyses identified the greatest VPH concentrations in soil boring MW-4 near the downgradient property boundary, however it should be noted that the sample submitted from the former UST location further upgradient was not the sample that exhibited the greatest PID reading.

Dissolved VPH concentrations have decreased in all monitoring wells from 2000 through 2006. The latest dissolved contaminant concentrations exceed the applicable GW-2 ground water standard in monitoring wells on the downgradient property boundary.

The extent of dissolved contaminants indicate that the greatest concentrations of dissolved contaminates were identified in MW-4, one of three downgradient monitoring wells.

The primary migration and exposure pathways at the site are associated with potential soil vapor migration to indoor air and inhalation of contaminated vapors by occupants of the nearest downgradient commercial structure on the south side of Swanton Street. The remaining exposure pathways were considered to be incomplete given the depth of soil contamination, the existing asphalt cover, the current foreseeable commercial site use of the property and downgradient properties on the south side of Swanton Street and the absence of a private or public water supply well in proximity to the site.

To assess the likelihood of a complete exposure pathway to indoor air associated with gasoline vapor, a soil gas survey was conducted along the downgradient property boundaries to the north and west. The soil gas survey results along the northern property boundary with Swanton Street identified soil gas PID readings that are slightly elevated above background. The land use on the opposite side of Swanton Street is residential.

Soil gas concentrations increased along the western property boundary reaching a maximum between the onsite building and the downgradient commercial drycleaners. The soil gas samples collected along the western boundary were believed to have been influenced by the instruments sensitivity to intermittent rain and high temperature and humidity conditions on July 17, 2007. The moisture effects are evident in the elevated background readings. Soil gas readings collected along the western boundary on July 18, 2007 when conditions were less humid indicate lower soil gas readings.

REMSERV, Inc. advanced a secondary soil gas probe, SG-25, approximately one foot to the east of SG-16 where the maximum PID reading was recorded on July 17, 2007. A SUMMA canister sample was collected at SG-25 over a two-hour exposure period and was submitted to Alpha Analytical for Air Phase Hydrocarbon (APH) analysis. REMSERV, Inc. used the result of the soil gas PID screening and the APH analysis of a soil gas sample to assess the potential for indoor air exposure from contaminated ground water and soils using MADEP published thresholds for the likelihood of unacceptable indoor air exposure to contaminated vapor. As a result of the soil gas PID readings and the APH results, REMSERV, Inc. has concluded that none of the soil gas data exceeds the MADEP published thresholds for potential likely risks to indoor air.

It is REMSERV, Inc.'s opinion that site conditions do not pose an Imminent Hazard associated with soil gas contaminant concentrations or the additional criteria specified in 310 CMR 40.0321. A Condition of Substantial Hazard has not been met for the property since there is no complete exposure pathway and the site

Phase IV Completion & Class C-2 RAO Statement 12 Swanton Street Winchester, MA RTN 3-18598 ACOP-NE-04-3A027 8/16/07 Page 28

conditions do not meet the Substantial Hazard criteria outlined in 310 CMR 40.0956. Lastly REMSERV, Inc. has not identified a Condition of Substantial Release Migration as defined in 310 CMR 40.0006.

It is REMSERV, Inc.'s opinion that a temporary solution has been achieved for the site based on the decreasing trend in ground water dissolved VPH concentrations since 2000 and the absence of a complete exposure pathway to indoor air at on-site or downgradient structures.

REMSERV, Inc. has developed a Class C-2 RAO as a temporary solution because it is more cost effective than alternative technologies to achieve a permanent solution. REMSERV, Inc. has developed a quarterly VPH ground water sampling program under a Class C-2 Response Action Outcome the results of which will be used to assess the decreasing trend in dissolved concentrations and the potential to achieve a permanent solution.

15.0 Limitations

- Previous reports were sources of information pertaining to extent of contamination, record review, historical ownership, underground storage tank records and contact with public officials.
 REMSERV, Inc. has not verified the accuracy or validity of the information contained in these reports,
- 2. The accuracy and completeness of the information available at the sources reviewed and referenced as part of the site assessment (i.e. State and Municipal Officials, State and Municipal Agency files, etc.) is not verified by REMSERV, Inc.,
- 3. The subsurface environmental conditions at the site may vary significantly outside the immediate vicinity of the monitoring well locations. Therefore the conclusions and recommendations would require modification should additional information be made available or additional subsurface investigation be undertaken at the site. Should these conclusions warrant, REMSERV, Inc. will modify the Phase IV and Class C-2 RAO conclusions and recommendations,
- 4. REMSERV, Inc. has not conducted any off-site sampling and/or analyses including; a sewer manhole survey or indoor air analysis associated with any of the abutting structures,
- 5. The work conducted by REMSERV, Inc. is subject to our Schedule of Conditions and has been performed according to generally accepted environmental engineering practices. No other warranty is expressed or implied. The contents of this report may not be copied, provided, or otherwise communicated to parties not involved with the property without prior written consent from REMSERV, Inc.

16.0 List of References

- 1. The Winchester Assessor's Office Online database, located at http://winchester.patriotproperties.com
- REMSERV, Inc. personal communication with Ms. Anne Dyrne of the Winchester Public Works Department on April 27, 2005.

REMEDIATION & ENVIRONMENTAL MANAGEMENT SERVICES, INC.

Phase IV Completion & Class C-2 RAO Statement 12 Swanton Street Winchester, MA RTN 3-18598 ACOP-NE-04-3A027 8/16/07 Page 29

- 3. 314 CMR 4.00 Massachusetts Surface Water Quality Standards.
- 4. Massachusetts Geographic Information Systems, online mapping program displaying: public water supply protection areas; wetlands and streams; Protected Open Space; Areas of Critical Environmental Concern; Natural Heritage and Endangered Species Program BioMap Core Habitat and BioMap Supporting Natural Landscapes.
- 5. "Commonwealth of Massachusetts Underground Storage Tank Closure Assessment Manual." MADEP Policy #WSC-402-96. April 9, 1996.
- Web Engineering Associates, Inc. "Tier Classification Submittal: Bossi's Automotive Service, Inc. 12 Swanton Street Winchester, Massachusetts."
- 7. "Bedrock Map of Massachusetts", E-An Zen editor, 1982.
- 8. USGS, Water Resources of Massachusetts and Rhode Island. http://ma.water.usgs.gov
- 9. Fetter, C.W. Jr., 1980, Applied Hydrogeology, Charles E. Merrill Publishing Co., Columbus, OH.
- 10. US EPA: "Low-Flow Ground-Water Sampling Procedures." US EPA 540/S-95/504, April 1996.
- 11. MADEP: "Characterizing Risks Posed By Petroleum Contaminated Sites: Implementation of the MADEP VPH/EPH Approach." Policy #WSC-02-411, October 2002.

TABLE 1 - SOIL ANALYTICAL RESULTS Bossi Realty Trust 12 Swanton Street Winchester, MA RTN 3-18598

	П	П			\Box		$\overline{}$						
constront x, D-11 D	800	2,000	5,000	10,000	<31	<31	<30	120	<29.6	. <30	40.6	57.3	23.4
C ₁₉ -C ₅₆ Aliphatics (mg/kg)	3,000	5,000	5,000	10,000	<31	<31	<30	<33	<29.6	<30	<35.3	<36.1	16.3
C _y -C ₁₈ Aliphatics (mg/kg)	1,000	2,500	5,000	20,000	<31	<31	<30	350	<29.6	<30	43.3	129	174.1
C₃-C₁₀ Aromatics (mg/kg)	001	500	500	5,000	۱>	NA	1.4	2,400	8.66	< 0.313	280	216	581.2
C ₉ -C ₁₂ Aliphatics (mg/kg)	1,000	2,500	5,000	20,000	1.9	NA	2.2	<33	90'9	<0.313	217	350	115.4
C ₃ -C ₈ Aliphatics (mg/Ng)	100	200	200	5,000	-	NA	2.0	2,100	16.4	<0.94	639	1,130	648.1
Z-methylnaphthalene (mg/kg)	200	1,000	3,000	10,000	<0.51	<0.52	<0.5	26	0.162	<0.149	3.99	1.66	8.0
Naphthalene (by MA EPH) (mg/kg)	200	1,000	700	10,000	<0.51	<0.52	<0.5	29	<0.147	<0.149	3.92	0.642	11.2
Naphthalene (by MA VPH)	500	1,000	700	10,000	<0.5	NA	<0.5	09	0.332	<0.063	9.55	5.82	6.81
Potal Xylener (क्रुप्रस्क	200	1,000	3,000	10,000	<0.2	NA	<0.2	880	<0.268	<0.189	8.721	11.72	339.8
m-p-Zylene	NS	NS	SN	NS	<0.1	NA	<0.1	620	<0.179	<0.126	92.4	9.10	240.5
(mg/kg) o-Xylene	NS	NS	SN	NS	<0.1	NA	<0.1	260	<0.089	<0.063	35.4	29.7	99.3
MTBE MTBE	001	500	200	5,000	<0.1	NA	<0.1	10	<0.089	<0.063	<0.748	<0.793	10.0
(uE/KE) EtpAppeuzene	200	1,000	2,500	10,000	<0.1	NA	1:0>	170	<0.089	£90.0>	24.2	2.72	65.6
Toluene Toluene	005	1,000	3,000	10,000	<0.1	ΨN	1.0>	470	0.14	£90'0>	39.6	5.99	128.9
(m£/kg) Benzene	30	200	006	9,000	<0.1	NA	1.0>	<3.3	680.0>	<0.063	1.75	<0.793	1.8
PID (ppm)	;	ı	ı		110	0.0	828	>1,000	376	0.0	520	72.6	13
dreptd Sample Depth (1991)	!	. 1	†	!	12	12	12	91	13	12	2	41	
Sampling Date	1	ì	1	1	10/13/00	10/13/00	10/13/00	10/13/00	02/28/05	02/28/05	02/28/05	02/28/05	
(II əldma2	Method I S-1	Method 1 S-2	Method 1 S-3	UCLs	*MW-1 (10-12")	*MW-2 (10'-12')	*MW-3 (10-12")	*MW-4 (15'-15.5')	B101 S4 13-15 ¹	B102 SIB 11.5-12	B103 S1 13-151	B104 S1 13-15	EPC

LEGEND

BDL

SS

Below Laboratory Detection Limits

No Standard Published

Not Analyzed NA EPC

Not Reported

Sample Collected by Web Engineering Soil Exposure Point Concentration

Indicates that the soil sample was used in the EPC calculations

Notes:

- 1. Bolded values indicate concentrations above site applicable standards.
 - 2. All concentrations and standards reported in mg/kg.
- 3. EPCs are calculated using one-half the minimum detection limit for samples with values below the laboratory detection limit

TABLE 2 - GROUND WATER ANALYTICAL RESULTS Bossi Realty Trust 12 Swanton Street Winchester, MA RTN 3-18598

ealtemonA 122-112	200	000'05	30,000	100,000	BDL	BDL	TOE	VΝ	630	008	400	112	NA	009	194	NA.	005			9009	161	NA	400	157	NA
C ₁₉ -C ₃₆ Aliphatics (UgU.)	14,000	SN	90,000	100,000	BDL	BDL	BDL	NA	BDL	BDL	BDL	BDL	NA	BDL	BDL	NA	BDL			BDL	BDL	NA	BDL	BDL	NA
C ₅ -C ₁₄ Aliphaties (ug/L)	4,000	1,000	20,000	100,000	TOS	BDL	BDL	NA	1,500	1,300	4,200	BDL	NA	300	BDC	NA	400			2,400	BDL	NA	400	BDL	NA
C ₉ -C ₁₀ Aromatics (ug/L)	200	5,000	4,000	100,000	440	300	111	NA	17,000	18,000	16,200	10,700	NA	4,230	725	NA	6,910			8,950	3,920	NA	3,750	1,830	NA
C ₅ -C _{1,2} Alipbatics (ug/L)	4,000	1,000	20,000	100,000	340	159	229	NA	21,000	29,000	5,830	5,450	NA	1,110	247	NA	2,250			2,560	2,950	NA	1,520	777	NA
C ₅ -C ₈ Aliphanics (ug/L)	400	1,000	4,000 '	100,000	1,400	753	370	NA	30,000	47,000 :	22,400	2,440	NA .	1,110	683	NA	4,620	-	i	17,400	4,940	NA	8,890	1,690	NA
	300	NA	3,000	30,000	BDL	BDL	BDL	NA	1.4	1.3	BDL	BDL	NA	BDL	BDL	NA	BDL			BDL	BDL	NA	BDL	0.464	NA
. Ръеванћисве	300	NA	95	400	TGB	BDL	TGE	ΝA	1.1	1.7	BDL	TCE	NA	าดย	0.572	NA	TOS			BDL	BDI.	NA	JOH	BDL	NA
2-Меthylnaphthalene (ԱՁԱ)	10	10,000	3,000	100,000	1.4	JGB	TOB	NA	140	170	108	901	NA	6.36	11.3	NA	30.6			105	48.5	NA	48.3	39.3	NA
Иарыйвіспе (by ЕРН) (ug/l.)	140	1,000	20,000	000,001	2.3	BDL	0.569	NA	170	280	379	275	NA	44.5	6.18	NA	114			165	189	NA	88.1	71.1	NA
Maphthalene (by VPH) (ug/L.)	140	1,000	20,000	100,000	BDL	10.8	BDL	NA	830	1,100	1,090	594	NA	92.4	BDL	NA	368			392	253	NA	181	BDI.	NA
. 38TM . (J\2u)	70	20,000	20,000	100,000	16	BDL	TOE	NA	BDL	3,500	BDL	BDL	NA	BDL	BDL	NA	87.4			BDL	BDL	NA	38.6	BDL	NA
'esnalyX latoT (Agu)	10,000	9,000	200	100,000	138	60.4	BDL	NA	24,200	32,000	25,140	8,030	NA	224.3	BDL	NA	4,470			8,570	5,170	NA	2,860	1,160	NA
onalyX-o (Agn)	NS	NS	NS	NS	28	9.6	BDL	NA	7,200	12,000	7,640	1,830	NA	12.3	BDL	NA	016'1			2,480	1,410	NA	780	285	NA
ənəiyX- q+m (Д\gu)	NS	SN	NS	NS	110	50.8	BDL	NA	17,000	25,000	17,500	6,200	NA	212	BDL	NA	2,560			060'9	3,760	NA	2,080	875	NA
(ղ/Ցո) Էկիλլիշաշաց	700	30,000	4,000	100,000	37	26.8	BDL	NA	4,500	6,200	4,480	1,430	NA	58.5	4.42	NA	089			1,790	1,330	NA	843	329	NA
ənənloT (A'gu)	1,000	8,000	4,000	80,000	40	12.4	BDL	NA	23,000	41,000	1,950	103	NA	7.2	BDL	NA	1,600	lected	g Event	4,560	2,570	NA	338	43.2	NA
Benzene (ug/L)	5	2,000	000'01	100,000	11	11.4	BDL	NA	1,900	006,1	BDL	BDL	NA	BDL	BDL	NA	230	No Sample Collected	Monitoring Well Dry During Monitoring Event	168	9'89	NA	36.8	BDL	NA
noisevelT reseasor D	1	-	-	į	_	-	1	89.04	-	!	1	1	88.24	90.01	88.85	88.17	89.62	89,14	Well Dry D	90.65	89.32	88.62	90.91	89.50	88.78
Depth to Water (feet)	i	1	-	í	13.70	10.87	12.37	13.08	13.20	13,34	10.43	11.58	12.28	66'6	11,15	11.83	11.35	11.83	Monitoring	10.39	11.72	12.42	10.77	12.18	12.90
PVC Casing Elevation (feet)	1	1	1	ŀ	MM			102.12	NM	NM			100.52	100.00			100.97		100.96	101.04		101.04	101.68		101.68
Запрії прасс	***	1		1	10/24/00	04/01/05	12/19/06	08/10/02	10/24/00	10/24/00	04/01/05	12/19/06	08/10/02	04/01/05	12/19/06	08/10/02	04/01/05	12/19/06	08/10/07	04/01/05	12/19/06	08/10/07	04/01/05	12/19/06	08/10/07
G1 əlqmg2	GW-1 Standard	GW-2 Standard	GW-3 Standard	UCLs	*MW-1				*;MW-3	*MW-4 ·				B101-MW			B102B-MW		·	B103-MW			B104-MW		

LEGEND BDL

Below Laboratory Detection Limits
No Standard Published
Not Measured
Not Reported
Not Analyzed

NS NM NR NA

Monitoring well installed by previous consultant

 $\begin{tabular}{ll} \bf Bolded \ values \ indicate \ concentrations \ above \ site \ applicable \ standards. \\ Note: All \ concentrations \ and \ standards \ reported \ in \ ug/L. \\ \end{tabular}$

TABLE 3 - SOIL GAS SURVEY

Bossi's Auto Group 12 Swanton Street Winchester, MA RTN 3-18598

<u> </u>			<u> </u>	DID (TVOC	• • • • •						
Probe ID	Date	Sample		PID (ppm								
		Depth (ft)	Maximum	Stabilized	Background	Corrected						
Soil C	as PID Screenin	g Levels for Eva	aluation of Indoc	or Air Impacts (1	.0.1 - 11.4 eV P	ID)						
	C5-C8 Aliphatics	S		7 ppm								
(C9-C12 Aliphatic	s	7 ppm									
	C9-C10 Aromatic	es	29 ppm									
	C9-C18 Aliphatic	:s		7 pp:								
	Toluene			12 pp								
	Ethylbenzene			4 pp:								
	Total Xylenes			16 pr								
SG-1	7/13/2007	4	3.2	0.7	0.1	3.1						
SG-2	7/13/2007	4	1.0	0.4	0.0	1.0						
SG-3	7/13/2007	4	0.5	0.3	0.1	0.4						
SG-4	7/13/2007	4	2.4	0.4	0.0	2.4						
SG-5	7/13/2007	4	1,1	. 0.3	0.0	1,1						
SG-6	7/13/2007	4	0.4	0.1	0.0	0.4						
SG-7	7/13/2007	4	0.4	.0.0	0.0	0.4						
SG-8	7/13/2007	4	0.3	0.0	0.0	0.3						
SG-9	7/13/2007	3	0.5	0.1	0.1	0.4						
SG-10	7/17/2007	4	1.1	0.2	0.1	1.0						
SG-11	7/17/2007	4	1.8	0.7	0.1	1.7						
SG-12	7/17/2007	4	2.9	1.5	0.2	2.7						
SG-13	7/17/2007	4	6.2	4.1	1.8	5.4						
SG-14	7/17/2007	4	1.5	1.2	0.1	1.4						
SG-15	7/17/2007	4	3.1	2.1	0.0	3.1						
SG-16	7/17/2007	4	8.7	4.3	1.1	7.6						
SG-17	7/17/2007	4	5.9	3.8	2.1	3.8						
SG-18	7/17/2007	4	8.0	6.1	3.8	4.2						
SG-19	7/17/2007	4	4.8	3.3	1.7	3.1						
SG-20	7/17/2007	4	9.0	5.1	2.3	6.7						
SG-21	7/18/2007	3.7	See SG-21A		r							
SG-21A	7/18/2007	3.7	0.5	0.3	0.0	0.5						
SG-22	7/18/2007	3.65	0.8	0.7	0.0	0.8						
SG-23	7/18/2007	4.1	1.2	1,1	0.0	1.2						
SG-24	7/18/2007	3.5	1.6	1.1	0.1	1.5						
SG-25	7/30/2007	4.03	1.2	0.8	0.0	1.2						

<u>Note</u>

- 1. All soil gas survey locations were field screened for total volatile organic compounds (TVOCs) using a MiniRae 2000 photoionization detector (PID) (10.6 eV Lamp) calibrated to a benzene standard.
- Soil gas screening results were compared to Soil Gas Action Levels set forth in Table 4.9 of MADEP Policy #WSC-02-411 (October 2002).

TABLE 4 - SOIL GAS ANALYTICAL RESULTS
Bossi Realty Trust
12 Swanton Street
Winchester, MA

RTN 3-18598

C ₃ -C ₁₀ Aromatics (ug/m³)	104,000	639
Cy-C ₁₂ Aliphanics (ug/m³)	117,000	11,500
C ₅ -C ₄ Allphades (ug'm³)	111,000	1,590
ənəladıdaniydəM-2 (^é m\gu)	SN	BDI,
sasladidqaV. (^E m\zu)	NS	BDI,
38TM (^f m\zu)	SN	35.8
ensiyX istoT (^E m' <u>u</u> u)	94,000	BDf.
o-Xylene o-Xylene	SN	BDL.
om/X/enc (^c m/gu)	SN	BDI.
Ethylbenzene (ug/m²)	13,000	BDI.
ənsuloTr (² m/gu)	36,000	BDL
(ug/m³) Benzene	5	BDL
Sample Collection Depth (feet)	and the	4.03
Sampling Date	1	7/30/07
(II əlqma?.	Soil Gas GC Screening Levels ¹	SG-25

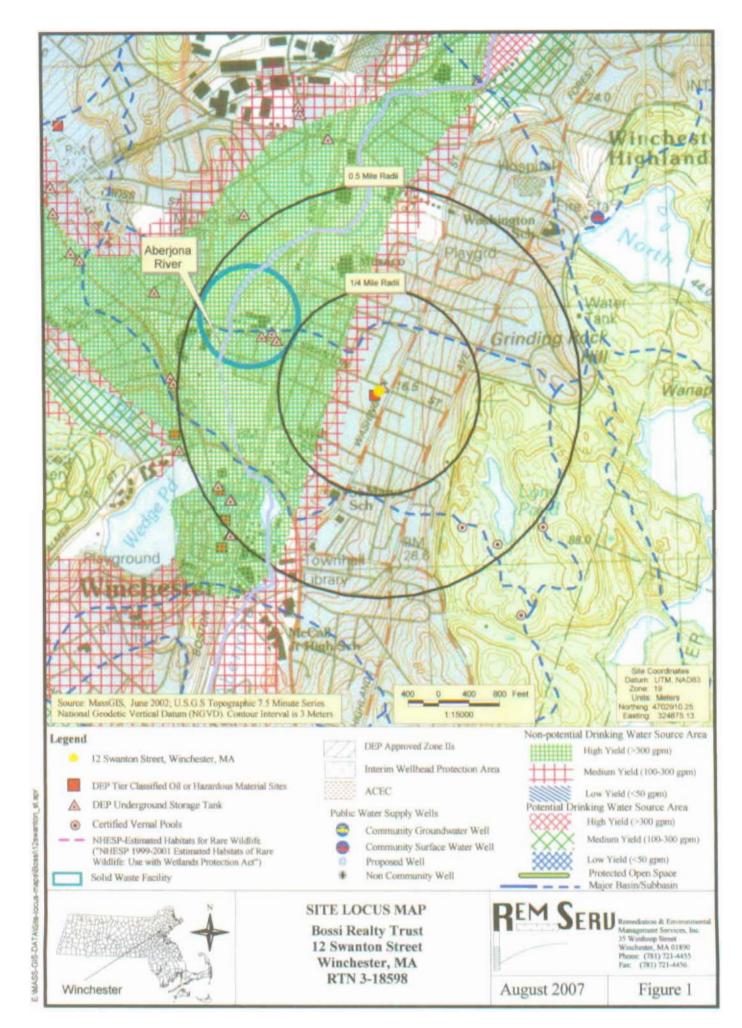
LEGEND

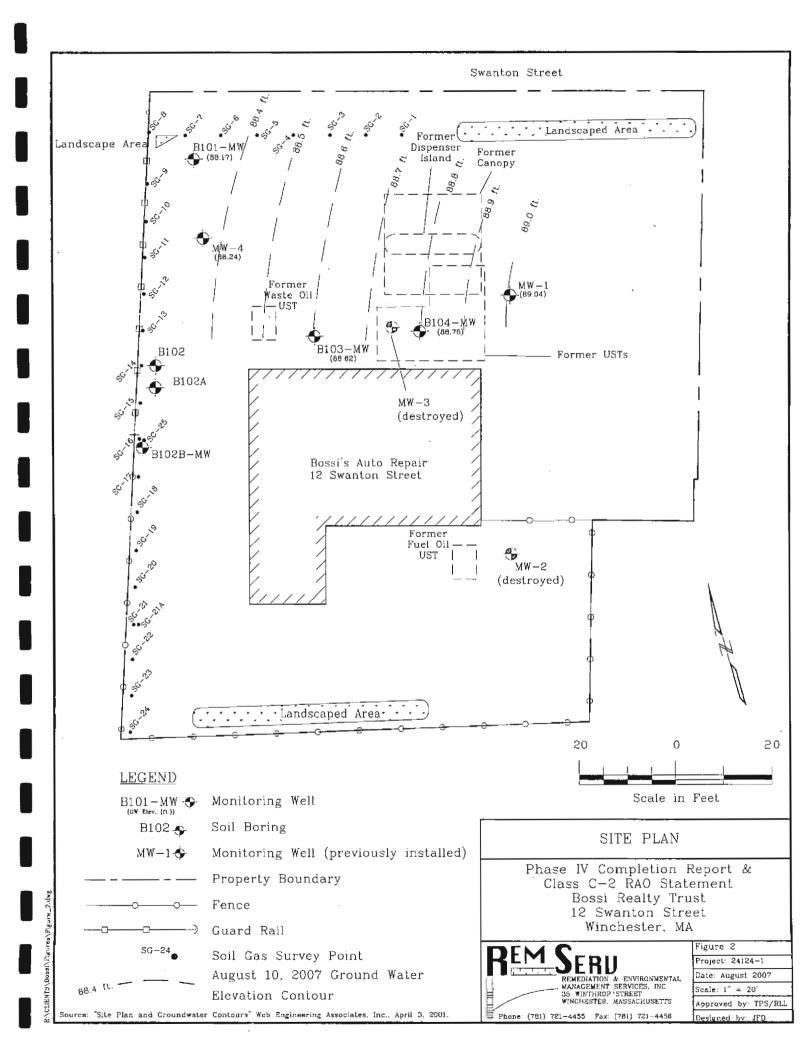
BOL

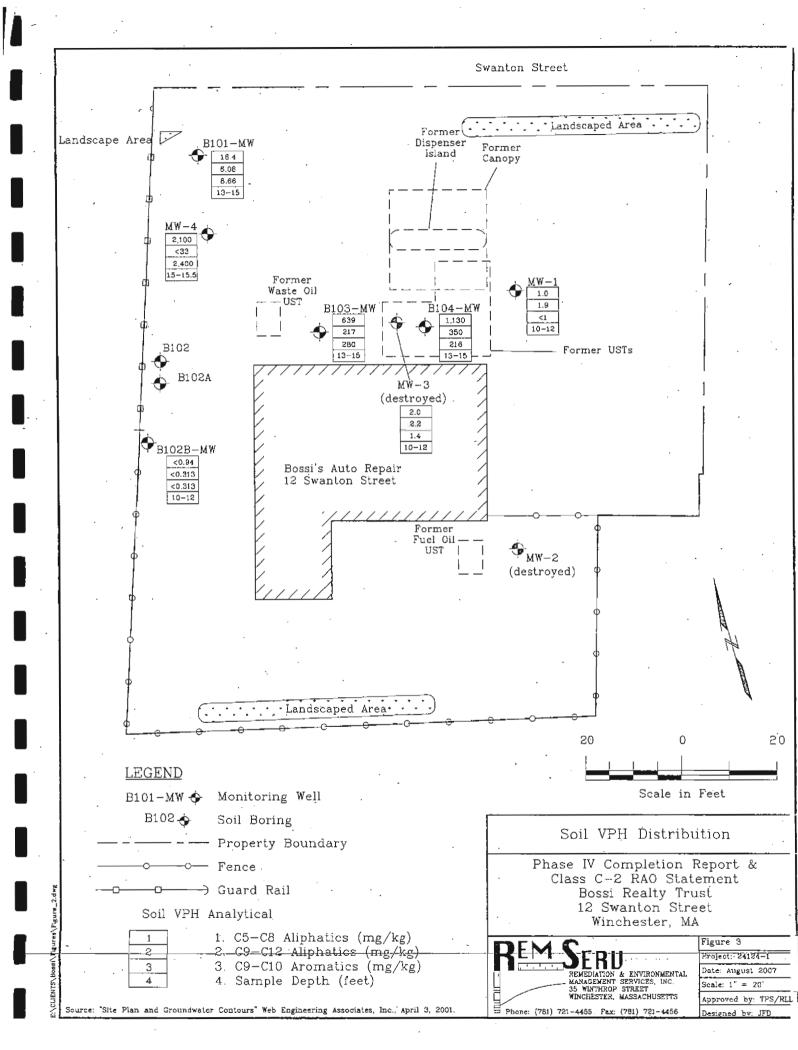
Below Laboratory Detection Limits

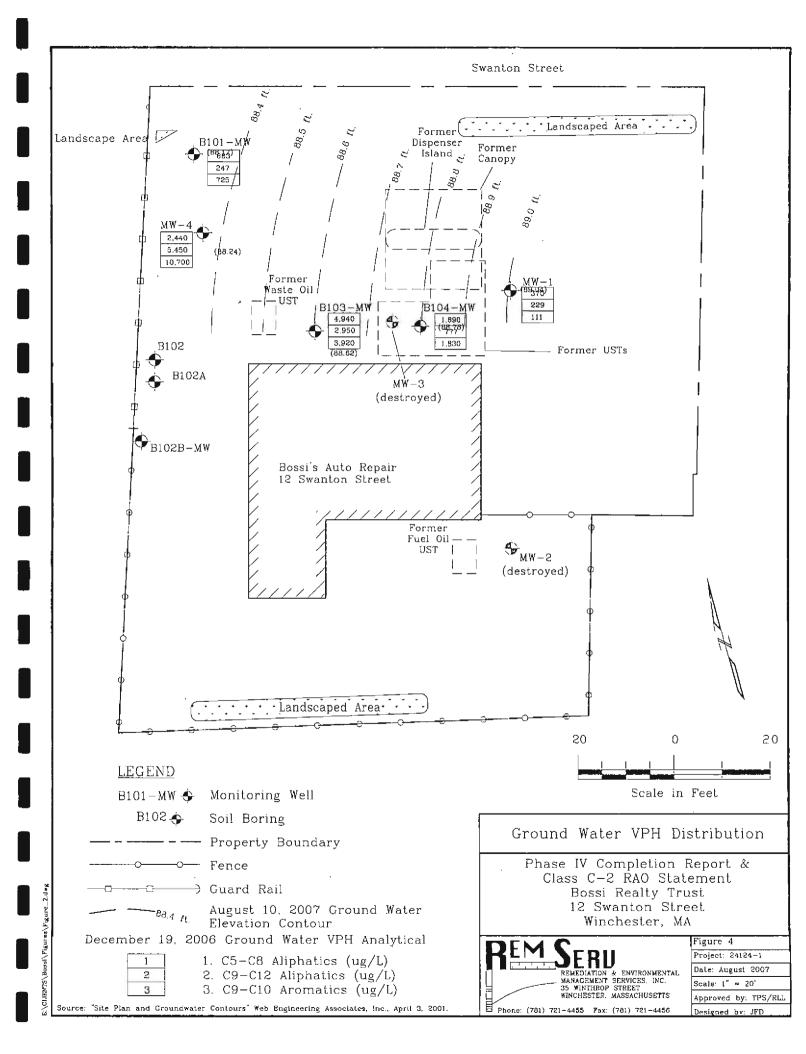
No Standard Published

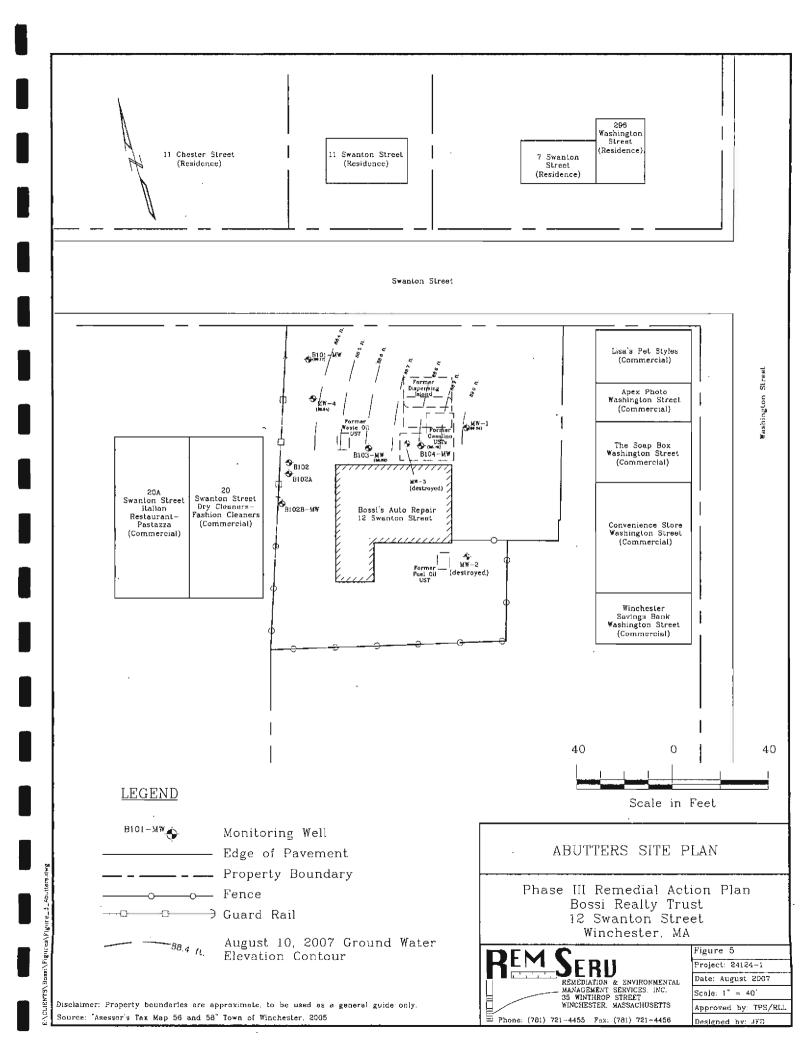
Not Measured


Not Reported


N N N


Bolded values indicate concentrations above site applicable standards.


Note: All concentrations and standards reported in ug/m3.


1. Table 4-10 of MADEP Policy #WSC-02-411 "Characterizing Risks Posed by Petroleum Contaminated Sites:Implementation of the MADEP VPH/EPH Approach"

BORING Ground Ground	Eleva	tion (F	t):		_Datum: Date:	— Date B	Start: 2/28/05 Finish: 2/28/05 By: S Garside d By: TPS	TEST BORING	
Ground	Water					1 ;	u by. [PS	_ 1 of 1 B10	
DEPTH FT.	Туре & No.	SAMPL Blows /6 In.	Pen	Rec In.	REMARKS	PID Bock/Read	SOIL AND ROC	K DESCRIPTIONS	
-				-			ASPHALT		
<u>-</u>							NO 0117170	•	
							NO SAMPLES		
F									
5									
-		28					tan medium to fine SAN	ID, little coarse san	
F	S1	? 48	24	14		0/0	little silt		
	S2	?	10	18		0/0	same as above		
_		37					auger pasted obstruction		
		38 83_	24	10		0/0.4	dense tan, medium to f		
10 —	ال	33	∠~+	10		V/ U.4	little sift, trace clay		
F .							augered to 13 ft.		
_			1						
							danaa coo la ci	- DAND 411	
L	S4	24 30	24	15		0/376	dense, gray coarse to fi clay, little gravel (mild p		
	34	35				0/3/6	15-16' gray coarse to fine SAND, some f		
15-	S5	9 14 47 50	18			0/156	gravel (mild petro odor) 16—16.5' very dense bro	own fine SAMO	
		47 50	"		<u>-</u>	3/130	trace gravel (no petro)		
<u> </u>					•		advance auger to 16.2	ft. — met with refu	
-							Bottom of Exploration at	t 1.6.5 ft.	
F	.		ļ.						
20									
F									
\vdash		,							
F									
F			l						
L							·		
25									
F									
F			1						
L									
-		-				.			
F									
30					. 1	NOTES	,		
Blows po	er 6 In to Driv	. of a e a 1—	140 l 3/8 l	b. Ham nch ID	mer falling Split	NOTES:			
Spoon	Sample	ır.			arrel Penetration	— Drilling rig	is : Mobil B53 4 1/4 HSA		
Rec-Ler					THE PRINCESSON		1 7/8 Split Spoon		
RQD-Ler	_			•	ns		140 lb Hammer	· .	
S-Split			/0			,	,		
		'	roeni	og for l	VÕÕE WIH		DEN : DEN	EDIATION & ENVIRONME	
JHS-Jar	neocs	puce sc ≥V Bulb	n'eetin	19 101	YOUS WILL			NAGEMENT SERVICES, I	

	BORING	LOCA	TION:	See	Plan		Date :	Start:_	2/28/05		TEST BOR	2012 2002
	Ground	Elevat	tion (Ft	:):		Datum:	Date Drilled	Finish:_ Bv:	2/28/05 S. Garside		PAGÉ	TING LOG
	Ground	Water	El. (F	t.):		Dote:	Logge	d By:_	S Garside TPS		1 of 1	B102
	DEPTH FT.	Type & No.	SAMPL Blows /6 In.	Pen	Rec In.	REMARKS	PID Back/Read		SOIL AND	ROCK	DESCRIPTION	NS
}- - - -			,					. ,	- ASPH/	ALT —		
-	- -								to 3 ft. — me d rig to 5 ft. to			
-	- - 5		- 									
	- - -		•			·						
į	- - - - 10	. '							NO SAMPLE	s to	10 ft.	
	<u>-</u>	S1	49 75 78 95	24	22		0/0	. sand	dense fine SAN , little clay, littl	e gra	vel	
	- - - - - - - 15							adva move adva cobb	enser and exhib ince auger to 13 e boring to 10 ince to 12 ft. w ble and meet wit	2 ft. ft. to jith Hi	and meet w the south SA and drill	rith refusal — past the
								Auge	ft. er Refusal at 11 om of Exploratio			
	 20					·						
	25 									,		
-	- 											
102.dwg	30 Blows p	er 6 Ir	n. of a	140	 Lb. Ho	ammer falling	NOTES:		··			
::\CUENTS\Boss\Boring_logs_MWs\B102.dwg	30 In. Spoon Pen-Le Rec-Le RQD-Le	to Driv Sample ngth of ngth of	ve a 1~ er.	-3/8 er or ered S Core	lnch II Core Sample	D Split Barrel Penetration	~ Drilling rig	4 1	obil B53 1/4 HSA 7/8 Split Spoor O lb Hammer	n		
CLENTS\Boss\\	S—Split JHS—Jai	Speen Heads h 11.7	Sample space S eV Bulb	creeni		r VÖCs with ne)		Boss Swanto Vinchest	on Street	MAN	DIATION & EN NAGEMENT SER	RVICES, INC.

2/28/05 BORING LOCATION: See Plan Date Start: TEST BORING LOG Date Finish: 2/28/05 Ground Elevation (Ft): Datum: Drilled By: S Garside PAGE Ground Water El. (Ft.): Date: Logged By: B103 1 of 1 SAMPLE PID DEPTH REMARKS Back/Read SOIL AND ROCK DESCRIPTIONS Blows Pen /6 In. In. Rec FΤ. - ASPHALT -NO SAMPLES augers to 13 ft. petro odor on drill cuttings/auger returns at 13 ft. 10 13 19 0/520 gray to black silty fine SAND, little clay S1 24 15 -Auger Refusal at 15 ft. Bottom of Exploration at 15 ft. 20 25 Blows per 6 In. of a 140 Lb. Hammer falling 30 In. to Drive a 1-3/8 Inch ID Split Spoon Sampler. NOTES: - Drilling rig is : Mobil B53 Pen-Length of Sampler or Core Barrel Penetration 4 1/4 HSA 1 7/8 Split Spoon Rec-Length of Recovered Sample 140 lb Hammer RQD-Length of Sound Core Sections >4 In./Length Cored % S-Split Spoon Sample JHS-Jar Headspace Screening for VOCs with PID with 11.7eV Bulb (as benzene) REMEDIATION & ENVIRONMENTAL Bossi's MANAGEMENT SERVICES, INC. 12 Swanton Street 🛂 Ground Water Winchester, MA Project No: 24124-1

BORING Ground		TION: tion (Fi			Datum:	— Date	Start: 2/25/05 Finish: 2/28/05 By: 5 Carride	TEST BOY	RING L
Ground	Water	El. (F	t.):		Date:	Logge	By: S Garside d By: TPS	_ PAGE _ 1 of 1	B104
DEPTH FT.	Type	SAMPL Blows /6 ln.	Pen In.	Rec In.	REMARKS	PID Back/Read	SOIL AND ROC	K DËSCRIPTIOI	VS.
							- ASPHALT	_	-
 							·		
_ · ;									
_ 5									
- -							- NO SAMPLES		•
_ -									
<u> </u>			 -						
E							·		
- - -						-			
_ _ _	S1	13 19 24 35				0/72.6	dense black silty fine S (petro odor)	AND	
15-	S2	13 29 50<1	18		·	0/144.9	gray silty fine SAND, litt sand, little grovel, trace	clay f	medium
-							Bottom of Exploration a	t 16 ft.	
<u>-</u>									
20									
_									
-		,					•		
E	-								
25		} .							
_ -									•
- 30					•			•	
Blows p	er 6 Ir to Driv	n. of a	140 L 3/8 ir	b. Ham	mer falling Split	NOTES:			
Spoon Pen-Ler	Sample ngth of	er. Sample	ėror (Core Bo	rrel Penetration	— Drilling rig	is : Mobil B53 4 1/4 HSA		
Rec-Ler RQD-Le	_			-	s		1 7/8 Split Spoon 140 lb Hammer		
S-Split	Spoon	Sample							
JHS−Jar PID wit	h 11.7	eV Bulb	creenin (as b	enzene	/ŌĆs with)		Swanton Street M.	MEDIATION & EN'	VICES, IN
₹ 0.00	na wat	-ti					Pro	ject No: 2412	24-1

ssi's Swanton Street ssi Realty Trust pedition Drilling S S	DRILLER S. Garside DATE 02/25/05	PROJECT NO. BORING NO. ELEVATION - TOP OF PVC LOCATION	24124-1 B101-MW
ssi Realty Trust pedition Drilling S	DATE 02/25/05	ELEVATION - TOP OF PVC	100'
pedition Drilling S S	DATE 02/25/05	TOP OF PVC	
S S	DATE 02/25/05		
S	- · · .	LOCATION	O D1
	<u></u>	1	See Plan
.0 ft			
	GROUND EL. ft (approximate		
	SURFACE SEAL	· -	
	TYPE (indicate any additional seals)		Cement Grou
	THICKNESS		0.5 ft.
	SURFACE CASING		
	TYPE		Roadway Box
	INNER DIAMÉTER		3 in.
	DEPTH OF BOTTOM		1 ft
	RISER PIPE		
	TYPE		Sch. 40 PV0
			2 in. nomina
	BACKFILL AROUND RISER PIPE		Borehole Cutti
	BOREHOLEMELL SEAL		
			_
Execute EAST-10			-
	TYPE .		Bentonite
	DEPTH OF TOP		4.3 ft.
	DEPTH OF BOTTOM	•	5.3 ft.
	SCREENED SECTION		
	TYPE		Sch. 40 PV
	ID and OD		2 in. nomina
	DESCRIBE OPENINGS		0.010 in.
	DEPTH OF TOP OF SCREEN		0.3 ft.
· · ·	BACKFILL AROUND SCREEN		Silica Sand
			16.3 ft.
·,			5.3 ft.
1	DEPTH OF BOTTOM OF SAND CO	DLUMN	16.3 ft.
	TYPE OF BACKFILL BELOW PERVIOUS	SECTION	- -
<u></u>			
F	BOREHOLE		
	DIAMETER		8 in.
	DEPTH OF BOTTOM		16.3 ft.
· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·
	!		
		TYPE INNER DIAMETER DEPTH OF BOTTOM RISER PIPE TYPE Size BACKFILL AROUND RISER PIPE BOREHOLEWELL SEAL TYPE DEPTH OF TOP DEPTH OF BOTTOM TYPE ID and OD DESCRIBE OPENINGS DEPTH OF TOP OF SCREEN BACKFILL AROUND SCREEN DEPTH OF BOTTOM OF SAND COLUM DEPTH OF BOTTOM TYPE OF BACKFILL BELOW PERVIOUS SERVICES OF THE BOTTOM BOREHOLE DIAMETER DEPTH OF BOTTOM	TYPE INNER DIAMETER DEPTH OF BOTTOM RISER PIPE TYPE Size BACKFILL AROUND RISER PIPE BOREHOLE/WELL SEAL TYPE DEPTH OF TOP DEPTH OF BOTTOM TYPE DEPTH OF BOTTOM SCREENED SECTION TYPE ID and OD DESCRIBE OPENINGS DEPTH OF BOTTOM OF SCREEN BACKFILL AROUND SCREEN DEPTH OF TOP OF SAND COLUMN TYPE OF BACKFILL BELOW PERVIOUS SECTION BOREHOLE DIAMETER DEPTH OF BOTTOM

.

.

		ATER OBSERVA	TION WELL REPORT		
	DJECT	Bossi's		PROJECT NO.	24124-1
II .	CATION	12 Swanton Street		BORING NO.	B102B-MW
ll .	ENT	Bossi Realty Trust		ELEVATION	
If .		Expedition Drilling	DRILLER S. Garside	TOP OF PVC	100.97
LI .	SERVED BY		DATE <u>02/25/05</u> -	LOCATION	See Plan
CHE	ECKED BY	TPS			
DEP'	тн	0.0 ft	GROUND EL. ft (approximate	=)	
	GENERAL SOIL		SURFACE SEAL		
	CONDITIONS		TYPE (indicate any additional seals)	Cement Grou
	(not to scale)		THICKNESS		0.5 ft.
 					
			SURFACE CASING		
	•	2.2	TYPE		Roadway Box
			INNER DIAMETER		3 in.
			DEPTH OF BOTTOM		10 in.
			RISER PIPE		
			TYPE		Sch. 40 PVC
:			Size		2 in, nomina
			BACKFILL AROUND RISER PIPE		Borehole Cuttir
					· · · · · · · · · · · · · · · · · · ·
			BOREHOLE/WELL SEAL		
			TYPE		Bentonite
. Se	e Boring Log		DEPTH OF TOP		5.25 ft.
			DEPTH OF BOTTOM		6.25 ft.
ļ			TYPE		-
	-		DEPTH OF TOP		-
-			DEPTH OF BOTTOM		_
]			
			SCREENED SECTION		
			TYPE		Sch. 40 PVC
İ			ID and OD		2 in. nomina
			DESCRIBE OPENINGS		0.010 in.
			DEPTH OF TOP OF SCREEN		7.25 ft.
	,		BACKFILL AROUND SCREEN	•	Silica Sand
			DEPTH OF BOTTOM OF SCREEN	1	12.25 ft.
			DEPTH OF TOP OF SAND COLUM		6.25 ft.
			DEPTH OF BOTTOM OF SAND CO		12.25 ft.
			TYPE OF BACKFILL BELOW PERVIOUS	SECTION	_
1					
12,25ft.			BOREHOLE		
Z.ZƏIL. ——			DIAMETER		8 in.
	,		DEPTH OF BOTTOM		12.25 ft.

. .

GROUND WA	Bossi's	•	PROJECT NO.	. 24124-1
LOCATION	12 Swanton Street		BORING NO.	B103-MW
CLIENT			ELEVATION -	D 103-10104
	Bossi Realty Trust Expedition Drilling	DRILLER S. Garside	TOP OF PVC	101.04
OBSERVED BY		DATE 02/25/05	LOCATION	See Plan
	TPS ,		LOCATION	
CHECKED BY	11.9		<u> </u>	
DEPTH	0.0 ft	GROUND EL. ft (approximate)		
GENERAL SOIL		SURFACE SEAL		_
CONDITIONS		TYPE (indicate any additional seals)		Cement Grout
(not to scale)		THICKNESS		0.5 ft.
		SURFACE CASING		
		TYPE		Roadway Box
•		INNER DIAMETER		3 in.
		DEPTH OF BOTTOM		10 in.
		RISER PIPE		Cab 40 0\/C
		TYPE		Sch. 40 PVC 2 in. nominal
•		Size BACKFILL AROUND RISER PIPE		Borehole Cutting
		BACKFILE AROUND RISER FIFE		Boletiole Cutting
		BOREHOLEWELL SEAL		
		TYPE		Bentonite
See Boring Log		DEPTH OF TOP		3.5 ft.
		DEPTH OF BOTTOM		4.5 ft.
		TYPE		
		DEPTH OF TOP		-
		DEPTH OF BOTTOM		
	· · · · · · · · · · · · · · · · · · ·	eccesies cection		
		SCREENED SECTION TYPE		Sch. 40 PVC
		ID and OD	-	2 in. nominal
		DESCRIBE OPENINGS		0.010 in.
		DEPTH OF TOP OF SCREEN		5.5 ft.
		BACKFILL AROUND SCREEN		Silica Sand
		DEPTH OF BOTTOM OF SCREEN		15.5 ft.
		DEPTH OF TOP OF SAND COLUM	N	4.5 ft.
		DEPTH OF BOTTOM OF SAND CO		15.5 ft.
	k			
		TYPE OF BACKFILL BELOW PERVIOUS S	ECTION	-
15.5 ft		BOREHOLE		
10.0 16		DIAMETER		8 in.
		DEPTH OF BOTTOM		15.5 ft.
			 -	
NOTES: 1. Survey	Datum:		TION & ENVI	

•

PROJECT	Bossi's		PROJECT NO.	24124-
LOCATION	12 Swanton Street		BORING NO.	B104-M
CLIENT	Bossi Realty Trust		ELEVATION -	
	Expedition Drilling	DRILLER S. Garside	TOP OF PVC	101.68
OBSERVED BY		DATE 02/25/05	LOCATION	See Pla
CHECKED BY	TPS			
DEPTH	0.0 ft	GROUND EL. ft (approximate)	1	
GENERAL SOIL	0.0 R	SURFACE SEAL		_
CONDITIONS	100	TYPE (indicate any additional seals)		Cement G
(not to scale)		THICKNESS		0.5 ft.
(1701 10 00010)				
		SURFACE CASING		
		TYPE		Roadway B
		INNER DIAMETER		3 in.
		DEPTH OF BOTTOM		10 in.
		DEPTH OF BOTTOM		10 111.
		RISER PIPE		
		TYPE .		Sch. 40 P
		Size		2 in. nom
				Borehole C
		BACKFILL AROUND RISER PIPE		DOTERIOR C
		BOREHOLE/WELL SEAL		
		TYPE		Bentoni
See Boring Log		DEPTH OF TOP		4 ft.
		DEPTH OF BOTTOM	,	5 ft.
		TYPE		-
		. DEPTH OF TOP		_
		DEPTH OF BOTTOM		-
		,		
	I	SCREENED SECTION		
		TYPE		Sch. 40 F
	\$ 	3D and OD		2 in. nom
		DESCRIBE OPENINGS		0.010 i
	(a) (a) a	DEPTH OF TOP OF SCREEN		6 ft.
		BACKFILL AROUND SCREEN		Silica Sand
		DEPTH OF BOTTOM OF SCREEN		16 ft.
		. DEPTH OF TOP OF SAND COLUMN	N .	5 ft.
		DEPTH OF BOTTOM OF SAND COL	LUMN	16 ft.
•	1	TYPE OF BACKFILL BELOW PERVIOUS S	ECTION	<u> </u>
	[: [];	20050015		
16 ft. —		BOREHOLE DIAMETER		8 in.
•		DEPTH OF BOTTOM	•	16 ft.
		· ·		10 10.

ľ

, ANALYTICAL REPORT

Lab Number:

L0710917

Client:

REMSERV

35 Winthrop Street Ext. Winchester, MA 01890

ATTN:

Thomas Simmons

Project Name:

BOSSI'S

Project Number:

24124-1

Report Date:

08/10/07

Certifications & Approvals: MA (M-MA086), NY NELAC (11148), CT (PH-0574), NH (200305), NJ (MA935), RI (LAO00065), ME (2006012), PA (Registration #68-03671), USDA (Permit #S-72578), US Army Corps of Engineers, Naval FESC.

08100712:01

Project Name: BOSSI'S Project Number: 24124-1

Lab Number: L0710917 Report Date:

08/10/07

Alpha Sample ID

Client ID

Sample Location

L0710917-01

SG-25

WINCHESTER, MA

Project Name:

BOSSI'S

Project Number:

24124-1

Lab Number:

L0710917

Report Date:

08/10/07

Case Narrative

The samples were received in accordance with the chain of custody and no significant deviations were encountered during preparation or analysis unless otherwise noted below.

MCP Related Narratives

APH

L0710917-01 has elevated detection limits due to the dilution required by the elevated concentrations of target compounds in the sample.

L0710917-01: Acetone and Tetrachloroethylene are present in the C5-C8 Aliphatic Hydrocarbon range. The response for these analytes was not included in the calculation of the C5-C8 range result since they are not petroleum hydrocarbons.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Kathelin M. o'Savin

Title: Technical Director/Representative

Date: 08/10/07

AIR

08100712:01

Project Name:

BOSSI'S

DO3313

Lab Number:

L0710917

Project Number:

24124-1

Report Date:

08/10/07

SAMPLE RESULTS

Lab ID:

L0710917-01

Client ID:

SG-25

Sample Location:

WINCHESTER, MA

Matrix:

Soil_Vapor

Anaytical Method:

43,DRAFT 1

Analytical Date:

08/07/07 20:24

Analyst:

HM

Date Collected:

07/30/07 15:28

Date Received:

07/30/07

Field Prep:

Not Specified

Quality Control Information

Sample Type:

Sample Container Type: Sampling Flow Controller:

Sampling Zone:

Sampling Flow Meter RPD of pre & post-sampling calibration check:

Were all QA/QC procedures REQUIRED by the method followed?

Were all performance/acceptance standards for the required procedures achieved?

Were significant modifications made to the method as specified in Sect 11.3?

Flow Integrated 2 Hrs. Canister - 2.7 Liter

Mechanical Unknown

<=10% Yes Yes

Νø

Parameter Result Qualifler Units RDL **Dilution Factor** Petroleum Hydrocarbons in Air C5-C8 Aliphatics 1630 240 10 ug/m3 C9-C12 Aliphatics 12200 ug/m3 280 10 1,3-Butadiene ND 20.0 ug/m3 10 Methyl tert butyl ether 35.8 ug/m3 20.0 10 Benzene ND ug/m3 20.0 10 Toluene ND ug/m3 20.0 10 Ethylbenzene ND ug/m3 20.0 10 p/m-Xylene ND ug/m3 40.0 10 o-Xylene ND ug/m3 20.0 10 Naphthalene ND ug/m3 20.0 10 2-Methylnaphthalene ND 80.0 ug/m3 10 C5-C8 Aliphatics, Adjusted 1590 ug/m3 240 10 C9-C12 Aliphatics, Adjusted 11500 280 ug/m3 10 C9-C10 Aromatics 639 ug/m3 240 10

Project Name:

BOSSI'S

Project Number: 24124-1

Lab Number:

L0710917

Report Date:

08/10/07

Method Blank Analysis Batch Quality Control

Analytical Method:

43,DRAFT 1 08/07/07 12:27

Analytical Date:

НМ

Analyst: H

Parameter	Result	Qu	alifier	Units	RDL
Petroleum Hydrocarbons in Ai	ir for sample(s):	01	Batch:	WG289882-4	
C5-C8 Aliphatics	ND			ug/m3	24.0
C9-C12 Aliphatics	ND			ug/m3	28.0
1,3-Butadiene	ND			ug/m3	2.00
Methyl tert butyl ether	ND		. ,	ug/m3	2.00
Benzene	ND			ug/m3	2.00
Toluene	ND	ra commercia del		ug/m3	2.00
Ethylbenzene	ND			ug/m3	2.00
p/m-Xylene	ND			ug/m3	4.00
o-Xylene	ND			ug/m3	2.00
Naphthalene	ND			ug/m3	2.00
2-Methylnaphthalene	ND			ug/m3	8.00
C5-C8 Allphatics, Adjusted	ND			ug/m3	24.0
C9-C12 Aliphatics, Adjusted	ND			ug/m3	28.0
C9-C10 Aromatics	ND			ug/m3	24.0

Lab Control Sample Analysis Batch Quality Control

BOSSI'S 24124-1

Project Number: Project Name:

L0710917 Lab Number:

08/10/07

Report Date:

"Recovery CSD rcs

Parameter	%Recovery	"Recovery	Limits	RPD	RPD Limits
Petroleum Hydrocarbons in Air Associated sample(s): 01	oclated sample(s): 01	Batch: WG289882-1	1		
1,3-Butadiene	103		70-130	•	
Methyl tert butyl ether	103		70-130	•	
Benzene	6		70-130		
Toluene	46		70-130		
Ethylbenzene	58		70-130		
p/m-Xylene	35		70-130		
o-Xylane	. 6	,	70-130		
Naphthalene	3	,	50-150		
2-Methyinaphthalene	75		50-150	. ,	-
C5-C8 Aliphatics, Adjusted	96		70-130		
C9-C12 Aliphatics, Adjusted	100		70-130	•	
C9-C10 Aromatics	7.8		70-130	. '	

Lab Duplicate Analysis
Batch Quality Control

BOSSI'S

Project Name:

Lab Number:

L0710917 08/10/07

Report Date:

24124-1 Project Number:

Parameter	Native Sample Du	Duplicate Sample	Units	RPD	RPD Limits
Petroleum Hydrocarbons in Air Associated sample(s): 01	QC Batch ID: WG289882-3	1	QC Sample; L0710984-01 Client ID; DUP Sample	int ID; DUP Sam	ple
C5-C8 Aliphatics	3350	3140	ug/m3	6	30
C9-C12 Allphatics	73800	00069	ng/m3	7	30
1,3-Butadiene	DN	ND	ng/m3	O N	30
Methyl tert butyl ether	QN	QN	ug/m3	NC	30
Вепzепе	QN	QN	ug/m3	CO	30
Toluene	QN	QN	ng/m3	NC	30
Ethylbenzene	QN	QN	ra/m3	NO.	30
p/m-Xylene	QV Qv	QN	ug/m3	NC	30
o-Xylene	QV	QN	ug/m3	S	30 ,
Naphthalane	QN	QN	ng/m3	NC	30
2-Methyinaphthalene	QN	QN	ug/m3	NC	30
C5-C8 Allphatics, Adjusted	3350	3140	ug/m3	40	30
C9-C12 Aliphatics, Adjusted	70100	65700	ug/m3		30
C9-C10 Aromatics	3700	3320	ug/m3	-	30

08100712:01

Project Name: BOSSI'S Lab Number: L0710917

Project Number: 24124-1 Report Date: 08/10/07

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal NA Absent

Container Information

Container ID Container Type Cooler pH Temp Pres Seal Analysis

L0710917-01A Canister - 2.7 Liter NA NA NA NA Absent APH

Project Name:

BOSSI'S

Project Number:

24124-1

Lab Number:

L0710917

Report Date:

08/10/07

GLOSSARY

Acronyms

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD- Laboratory Control Sample Duplicate: Refer to LCS.

 MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NI - Not Ignitable.

 Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

ND - Not detected at the reported detection limit for the sample.

 RDL - Reported Detection Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily
designed to assess the precision of analytical results in a given matrix and are expressed as
relative percent difference (RPD). Values which are less than five times the reporting limit for any
individual parameter are evaluated by utilizing the absolute difference between the values; although
the RPD value will be provided in the report.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

The following data qualifiers have been identified for use under the CT DEP Reasonable Confidence Protocols.

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- J Estimated value. The analyte was tentatively identified; the quantitation is an estimation. (Tentatively identified compounds only.)

Report Format: Not Specified

Project Name:

BOSSI'S

Project Number:

24124-1

Lab Number:

L0710917

Report Date:

08/10/07

REFERENCES

43 Method for the Determination of Air-Phase Petroleum Hydrocarbons (APH), Draft 1.0, Massachusetts Department of Environmental Protection, February 2000.

LIMITATION OF LIABILITIES

Alpha Woods Hole Labs performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Woods Hole Labs shall be to re-perform the work at it's own expense. In no event shall Alpha Woods Hole Labs be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Woods Hole Labs.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

	(a)		10917	ALPHA Lab ID (Lab Use Only)	Other Project Sp	Email: ()5 W (Phone: 781	Address: 35 W	Client REMS	Eight Walkup Drive \TEL 508-898-9220	DF:A
	Shaded Gray Areas For Lab Use Only		56-95	SampleID	Other Project Specific Requirements/Comments:	all USUL @ Cancast, nut	7 4455	Win throp st.	REM SERV Inc.	启录 Walkup Drive Westborough MA 01581 TEL: 508-898-9220 FAX: 508-898-9193	AIR AN
Reminguished By	Use Only		35 E 196/L	Collection Date Start Time		Standard Spars To-is: 10 DAYS	Turn-Around Time	Project Manager: \\S\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Project Location: (1)?	Project Information Project Name: 8055, 15	AIRANALYSIS
7/30/67 /8/8			95 8251	Sample Santime Matrix		□ RUSH (only confirmed if pro-approved) Time:		Sturrons	Dirides MA		PAGEOF
Received By:	Container Type		0PP 785 0x	ar's ID s Can			Report to: (if different that Project Manager)	EMAİL (standard pdf report) Additional Deliverables:	Criteria Checker:	Report Information	Date Rec'd in Lab:
7/30/	ZS		8100	Controller PO TO TO APH	S SIM		Project Manager)	odf report) ables:	Criteria Checker:	mation - Data Deliverables	7/30/07
Time:				DISSO FIXEL TO.1:	OLVED GA	ANALYSIS		Regulatory Re State/Fed		Billing Information	ALPHA Job
clock will not start until any arrubguithes are resolved. All Casemples submitted are subject Alpha's Payment Terms. See Oreverse side.	Please print clearly, legibly and completely. Samples can not be			Sample Comments (i.e. PID	TO.10 OZ ONL)			Regulatory Requirements/Report Limit State/Fed Program Criteria		ation tinfo PO#:	ALPHA JOB #: 107/09/7

ANALYTICAL REPORT

Lab Number:

L0618574

Client:

REMSERV

35 Winthrop Street Winchester, MA 01890

ATTN:

Thomas Simmons

Project Name:

12 SWANTON ST

Project Number:

Not Specified

Report Date:

12/28/06

Certifications & Approvals: MA (M-MA086), NY NELAC (11148), CT (PH-0574), NH (200305), NJ (MA935), RI (LAO00065), ME (2006012), PA (Registration #68-03671), USDA (Permit #S-72578), US Army Corps of Engineers, Naval FESC.

12 SWANTON ST

Project Number: Not Specified

Lab Number:

L0618574

Report Date:

12/28/06

Alpha Sample ID	Client ID	Sample Location
L0618574-01	B101-MW	WINCHESTER, MA
L0618574-02	MW-4	WINCHESTER, MA
L0618574-03	B103-MW	WINCHESTER, MA
L0618574-04	B104-MW	WINCHESTER, MA
L0618574-05	MW-1	WINCHESTER, MA

12 SWANTON ST

Lab Number:

L0618574

Project Number: Not Specified

Report Date:

12/28/06

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An a	ffirmative response to questions A, B, C & D is required for "Presumptive Certainty" status	
Α	Were all samples received by the laboratory in a condition consistent with those described on their Chain-of-Custody documentation for the data set?	YES
В	Were all QA/QC procedures required for the specified analytical methods(s) included in this report followed, including the requirement to note and discuss in a narrative QC data that did not meet appropriate performance standards or guidelines?	YES ·
С	Does the analytical data included in this report meet all the requirements for "Presumptive Certainty", as described in section 2.0 of the MADEP document CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data"?	YES .
D	VPH and EPH methods only: Was the VPH or EPH method run without significant modifications, as specified in Section 11.3?	YES

A re	A response to questions E and F is required for "Presumptive Certainty" status							
Ë	Were all QC performance standards and recommendations for the specified method(s) achieved?	NO						
F	Were results for all analyte-list compounds/elements for the specified method(s) reported?	YES						

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

12 SWANTON ST

Lab Number:

L0618574

Project Number:

Not Specified

Report Date:

12/28/06

Case Narrative

The samples were received in accordance with the chain of custody and no significant deviations were encountered during preparation or analysis unless otherwise noted below.

MCP Related Narratives:

EPH:

In reference to question E:

Alpha sample 10618574-02 has the surrogate percent recovery for COD outside the method criteria. Due to limited sample volume no further action was performed.

EPH-MS:

The following samples have elevated detection limits due to the dilutions required by the elevated concentrations of target compounds in the samples:

L0618574-02 (PAH's 10x)

EPHD-GC

In reference to question E:

The WG265568 LCS/LCSD have a high RPD for Benzo (b) fluoranthene.

EPH-MS:

The following samples have elevated detection limits due to the dilutions required by the elevated concentrations of target compounds in the samples:

L0618574-03 (PAH's 10x)

VPH

The following samples have elevated detection limits due to the dilutions required by the elevated concentrations of target compounds in the samples:

L0618574-02 (25X)

L0618574-03 (20X)

L0618574-04 (10X)

12 SWANTON ST

Lab Number:

L0618574

Project Number:

Not Specified

Report Date:

12/28/06

Case Narrative (continued)

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director

Date: 12/28/06

ORGANICS

PETROLEUM HYDROCARBONS

Project Name:

12 SWANTON ST

Lab Number:

L0618574

Project Number:

Not Specified

Report Date:

12/28/06

SAMPLE RESULTS

Lab ID:

L0618574-01

Client ID:

B101-MW

Sample Location:

WINCHESTER, MA

Matrix:

Water

Anaytical Method: Analytical Date: 59,VPH-04-1.1 12/21/06 23:53

Analyst

TT

Date Collected:

12/19/06 12:44

Date Received:

12/20/06

Field Prep:

Not Specified

Quality Control Information

Condition of sample received:

Aqueous Preservative:

Satisfactory

Laboratory Provided Preserved

Container

Sample Temperature upon receipt:

Received on Ice

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Petroleum Hydrocarbons					
C5-C8 Aliphatics	683		ug/l	50.0	1
C9-C12 Aliphatics	977	71	ug/l	50.0	1
C9-C10 Aromatics	725		ug/l	50.0	1
C5-C8 Aliphatics, Adjusted	683		ug/l	50.0	1
C9-C12 Aliphatics, Adjusted	247		ug/l	50.0	1
Benzene	ND		ug/l	2.00	1
Toluene	ND		ug/l	2.00	1
Ethylbenzene	4.42		ug/l	2.00	1
p/m-Xylene	ND		ug/l	2.00	1
o-Xylene	ND		ug/l	2.00	1
Methyl tert butyl ether	ND		ug/l	3.00	1
Naphthalene	ND		ug/l	10.0	1

			Acceptance		
Surrogate	% Recovery	Qualifier	Criteria		
2,5-Dibromotoluene-PID	89		70-130		
2,5-Dibromotoluene-FID	90		70-130		

Project Name:

12 SWANTON ST

Lab Number:

L0618574

Project Number:

Not Specified

Report Date:

12/28/06

SAMPLE RESULTS

Lab ID:

L0618574-01

Client ID:

B101-MW

Sample Location:

WINCHESTER, MA

Matrix:

Water

Anaytical Method:

61,EPH-04-1

Analytical Date:

12/28/06 05:51

Analyst:

ΑJ

Date Collected:

12/19/06 12:44

Date Received:

12/20/06

Field Prep: Extraction Method: Not Specified EPA 3510C

Extraction Date:

12/26/06 14:15

Quality Control Information

Condition of sample received:

Aqueous Preservative:

Sample Temperature upon receipt: Sample Extraction method:

Satisfactory

Laboratory Provided Preserved

Container " Received on Ice

Extracted Per the Method

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
EPH with MS Targets					
C9-C18 Aliphatics	ND	Part of the second	ug/l	100	1
C19-C36 Aliphatics	ND		ug/i	100	1
C11-C22 Aromatics	212		ug/l	100	1
C11-C22 Aromatics, Adjusted	194		ug/l	100	1
Naphthalene	6.18		ug/l	0.400	1
2-Methylnaphthalene	11.3		ug/l	0.400	1
Acenaphthylene	ND		ug/l	0.400	1
Acenaphthene	ND		ug/l	0.400	1
Fluorene	ND		ug/l	0.400	1
Phenanthrene	0.572		ug/l	0.400	1
Anthracene	DN		ug/l	0.400	1
Fluoranthene	ND		ug/l	0.400	1
Pyrene	ND		ug/l	0.400	1
Benzo(a)anthracene	ND		ug/l	0.400	1
Chrysene	ND		ug/l	0.400	1
Benzo(b)fluoranthene	ND		ug/l	0.400	1
Benzo(k)fluoranthene	ND		ug/l	0.400	1
Benzo(a)pyrene	ND		ug/l	0.200	1
Indeno(1,2,3-cd)Pyrene	ND		ug/l	0.400	1
Dibenzo(a,h)anthracene	ND		ug/l	0.400	1
Benzo(ghi)perylene	ND		ug/l	0.400	1

Project Name:

12 SWANTON ST

Lab Number:

L0618574

Project Number:

Not Specified

Report Date:

12/28/06

SAMPLE RESULTS

Lab ID:

L0618574-01

B101-MW

Client ID: Sample Location:

WINCHESTER, MA

Date Collected:

12/19/06 12:44

Date Received:

12/20/06

Field Prep:

Not Specified

Parameter

Result

Qualifier

Units

RDL

Dilution Factor

EPH with MS Targets

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Chioro-Octadecane	63		40-140	
o-Terphenyl	69		40-140	
2-Fluoroblphenyl	77		40-140	
2-Bromonaphthalene	88		40-140	
O-Terphenyi-MS	. 78		40-140	

Project Name:

12 SWANTON ST

Lab Number:

L0618574

Project Number:

Not Specified

Report Date:

12/28/06

SAMPLE RESULTS

Lab ID:

L0618574-02

Client ID:

MW-4

Sample Location:

WINCHESTER, MA

Matrix:

Water

Anaytical Method: Analytical Date:

59, VPH-04-1.1 12/22/06 00:44

Analyst:

TT

Date Collected:

12/19/06 13:14

Date Received:

12/20/06

Field Prep:

Not Specified

Quality Control Information

Condition of sample received:

Aqueous Preservative:

Satisfactory

Laboratory Provided Preserved

Container

Received on Ice

Sample Temperature upon receipt:

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Petroleum Hydrocarbons	<u> </u>				
C5-C8 Aliphatics	2540		ug/l	1250	25
C9-C12 Aliphatics	25600		ug/l	1250	25
C9-C10 Aromatics	10700		ug/l	1250	25
C5-C8 Aliphatics, Adjusted	2440		ug/l	1250	25
C9-C12 Aliphatics, Adjusted	5450		ug/l	1250	25
Benzene	ND		ug/l	50.0	25
Toluene	103		ug/l	50.0	25
Ethylbenzene	1430		ug/l	50.0	25
p/m-Xylene	6200		ug/l	50.0	25
o-Xylene	1830		ug/l	50.0	25
Methyl tert butyl ether	ND		ug/l	75.0	25
Naphthalene	594		ug/l	250	25

		Acceptance			
Surrogate	% Recovery	Qualifier	Criteria		
2,5-Dibromotoluene-PID	89		70-130		
2,5-Dibromotoluene-FID	90		70-130		

Project Name:

12 SWANTON ST

Lab Number:

L0618574

Project Number:

Not Specified

Report Date:

12/28/06

SAMPLE RESULTS

Lab ID:

L0618574-02

Client ID:

MW-4

Sample Location:

WINCHESTER, MA

Matrix:

Water

Anaytical Method: Analytical Date: 61,EPH-04-1 12/28/06 06:25

Analyst:

ΑJ

Date Collected:

12/19/06 13:14

Date Received:

12/20/06

Field Prep:

Not Specified

Extraction Method: Extraction Date: EPA 3510C 12/26/06 14:15

Quality Control Information

Condition of sample received:

Aqueous Preservative:

Sample Temperature upon receipt:

Sample Extraction method:

Satisfactory

Laboratory Provided Preserved

Container

Received on Ice

Extracted Per the Method

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
EPH with MS Targets					
C9-C18 Aliphatics	ND		ug/l	101	1
C19-C36 Aliphatics	ND		ug/l	101	1
C11-C22 Aromatics	658		ug/i	101	1
C11-C22 Aromatics, Adjusted	277		ug/l	101	1
Naphthalene	275		ug/l	4.04	10
2-Methylnaphthalene	106		ug/l	4.04	10
Acenaphthylene	ND		ug/l	4.04	10
Acenaphthene	ND		ug/l	4.04	10
Fluorene	ND		ug/l	4.04	10
Phenanthrene	ND		ug/l	4.04	10
Anthracene	ND		ug/l	4.04	10
Fluoranthene	ND		ug/l	4.04	10
Pyrene	ND		ug/i	4.04	10
Benzo(a)anthracene	ND		ug/l	4.04	10
Chrysene	· ND		ug/l	4.04	10
Benzo(b)fluoranthene	ND		ug/l	4.04	10
Benzo(k)fluoranthene	ND		nâ\i	4.04	10
Benzo(a)pyrene	. ND		ug/l	2.02	10
Indeno(1,2,3-cd)Pyrene	ND		ug/l	4.04	10
Dibenzo(a,h)anthracene	ND		ug/l	4.04	10
Benzo(ghi)perylene	ND		ug/l	4.04	10

Project Name:

12 SWANTON ST

Lab Number:

L0618574

Project Number:

Not Specified

Report Date:

12/28/06

SAMPLE RESULTS

Lab ID:

L0618574-02

Client ID:

Sample Location:

MW-4

WINCHESTER, MA

Date Collected:

12/19/06 13:14

Date Received:

12/20/06

Field Prep:

Not Specified

Parameter

Result

Qualifier

Units

RDL

Dilution Factor

EPH with MS Targets

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
Chloro-Octadecane	36		40-140	
o-Terphenyl	43		40-140	
2-Fluorobiphenyl	65		40-140	
2-Bromonaphthalene	75		40-140	
O-Terphenyl-MS	44		40-140	
`				

Project Name:

12 SWANTON ST

Lab Number:

L0618574

Project Number:

Not Specified

Report Date:

12/28/06

SAMPLE RESULTS

Lab ID:

L0618574-03

Client ID:

B103-MW

Sample Location:

WINCHESTER, MA

Matrix:

Water

Anaytical Method:

59,VPH-04-1.1

Analytical Date:

12/22/06 01:34

Analyst:

 \prod

Date Collected:

12/19/06 14:04

Date Received:

12/20/06

Field Prep:

Not Specified

....

Not opec

Quality Control Information

Condition of sample received:

Aqueous Preservative:

Satisfactory

Laboratory Provided Preserved

Container Received on Ice

Sample Temperature upon receipt:

Parameter	Result	Qualifler	Units	RDL	Dilution Factor
Volatile Petroleum Hydrocarbons	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
C5-C8 Allphatics	7580		ug/l	1000	20
C9-C12 Aliphatics	13400		ug/l	1000	20
C9-C10 Aromatics	3920		ug/l	1000	20
C5-C8 Aliphatics, Adjusted	4940		ug/l	1000	20
C9-C12 Aliphatics, Adjusted	2950		ug/l	1000 ·	20
Benzene	68.6		ug/l	40.0	20
Toluene	2570		ug/l	40.0	20
Ethylbenzene	1330		ug/l	40.0	20
p/m-Xylene	3760		ug/l	40.0	20
o-Xylene	1410		ug/l	40.0	20
Methyl tert butyl ether	DN		ug/l	60.0	20
Naphthalene	253		ug/l	200	20

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
2,5-Dibromotoluene-PID	91		70-130	
2,5-Dibromotoluene-FID	94		70-130	

Project Name:

12 SWANTON ST

Lab Number:

L0618574

Project Number:

Not Specified

Report Date:

12/28/06

SAMPLE RESULTS

Lab ID:

L0618574-03

Client ID:

B103-MW

Sample Location:

WINCHESTER, MA

Matrix:

Water

Anaytical Method:

61,EPH-04-1

Analytical Date:

12/28/06 06:58

Analyst:

ΑJ

Date Collected:

12/19/06 14:04

Date Received:

12/20/06

Field Prep:

Not Specified

Extraction Method:

EPA 3510C

Extraction Date:

12/26/06 14:15

Quality Control Information

Condition of sample received:

Aqueous Preservative:

Sample Temperature upon receipt:

Sample Extraction method:

Satisfactory

Laboratory Provided Preserved

Container

Received on Ice

Extracted Per the Method

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
EPH with MS Targets				188700	
C9-C18 Aliphatics	ND		ug/l	100	1
C19-C36 Aliphatics	ND		ug/l	100	1
C11-C22 Aromatics	428		ug/l	100	1
C11-C22 Aromatics, Adjusted	191		ug/l	100	1
Naphthalene	189		ug/i	4.00	10
2-Methylnaphthalene	48.5		ug/l	4.00	10
Acenaphthylene	ND		ug/l	4.00	. 10
Acenaphthene	ND		ug/l	4.00	10
Fluorene	ND		ug/l	4.00	10
Phenanthrene	ND		ug/l	4.00	10
Anthracene	ND		ug/l	4.00	10
Fluoranthene	ND		ug/l	4.00	10
Pyrene	ND		ug/l	4.00	10
Benzo(a)anthracene	ND		ug/l	4.00	10
Chrysene	ND		ug/l	4.00	10
Benzo(b)fluoranthene	ND		ug/l	4.00	10
Benzo(k)fluoranthene	ND		ug/l	4.00	10
Benzo(a)pyrene	ND		ug/l	2.00	10
Indeno(1,2,3-cd)Pyrene	ND		ug/l	4.00	10
Dibenzo(a,h)anthracene	ND ·		ug/l	4.00	10
Benzo(ghi)perylene	ND		ug/l	4.00	10

Project Name: Project Number: 12 SWANTON ST

Not Specified

Lab Number:

L0618574

Report Date:

12/28/06

SAMPLE RESULTS

Lab ID:

L0618574-03

Client ID:

B103-MW

Sample Location:

WINCHESTER, MA

Date Collected:

12/19/06 14:04

Date Received:

12/20/06

Field Prep:

Not Specified

Parameter

Result

Qualifier

Units

RDL

Dilution Factor

EPH with MS Targets

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Chloro-Octadecane	51		40-140	
o-Terphenyl	66		40-140	
2-Fluorobiphenyl	72		40-140	
2-Bromonaphthalene	83		40-140	
O-Terphenyl-MS	69		40-140	

Project Name:

12 SWANTON ST

Not Specified

Lab Number:

L0618574

Project Number:

Report Date:

12/28/06

SAMPLE RESULTS

Lab iD:

L0618574-04

Client ID:

B104-MW

Sample Location:

WINCHESTER, MA

Matrix:

Water

Anaytical Method:

59, VPH-04-1.1

Analytical Date:

12/22/06 02:25

Analyst:

Toluene

Ethylbenzene

Methyl tert butyl ether

p/m-Xylene

Naphthalene

o-Xylene

TT

Date Collected:

12/19/06 14:36

Date Received:

12/20/06

Field Prep:

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

20.0

20.0

20.0

20.0

30.0

100.

Not Specified

Quality Control Information

Condition of sample received:

Aqueous Preservative:

Satisfactory

Laboratory Provided Preserved

10

10

10

10

10

10

Container Received on Ice

Sample Temperature upon receipt:

Parameter Result Qualifier Units RDL Dilution Factor Volatile Petroleum Hydrocarbons C5-C8 Aliphatics 1730 ug/l 500 10 C9-C12 Aliphatics 4100 10 500 ug/l C9-C10 Aromatics 1830 500 10 ug/l C5-C8 Aliphatics, Adjusted 1690 500 10 ug/i C9-C12 Allphatics, Adjusted 777 10 ug/l 500 Benzene ND 20.0 10

43.2

329

875

285

ND

ND

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2,5-Dibromotoiuene-PID	82		70-130	,~
2,5-Dibromotoluene-FID	85		70-130	

Project Name:

12 SWANTON ST

Lab Number:

L0618574

Project Number:

Not Specified

Report Date:

12/28/06

SAMPLE RESULTS

Lab ID:

L0618574-04

Client ID:

B104-MW

Sample Location:

WINCHESTER, MA

Matrix:

Water

Anaytical Method:

61,EPH-04-1

Analytical Date:

12/28/06 08:38

Analyst:

ΑJ

Date Collected:

12/19/06 14:36

Date Received:

12/20/06

Field Prep:

Not Specified EPA 3510C

Extraction Method: Extraction Date:

12/26/06 14:15

Quality Control Information

Condition of sample received:

Aqueous Preservative:

Sample Temperature upon receipt:

Sample Extraction method:

Satisfactory

Laboratory Provided Preserved

Container

Received on Ice

Extracted Per the Method

harmonia and a second a second and a second					
Parameter	Result	Qualifier	Units	RDL	Dilution Factor
EPH with MS Targets					
C9-C18 Aliphatics	ND		ug/l	100	1
C19-C36 Aliphatics	ND		ug/l	100	1
C11-C22 Aromatics	268		ug/l	100	1
C11-C22 Aromatics, Adjusted	157		ug/l	100	1
Naphthalene	71.1		ug/l	0.400	1
2-Methylnaphthalene	39.3		ug/l	0.400	1
Acenaphthylene	ND		ug/l	0.400	1
Acenaphthene	ND	•	ug/l	0.400	1
Fluorene	0.464		ug/l .	0.400	1
Phenanthrene	ND		ug/l	0.400	1
Anthracene	· ND		ug/l	0.400	1
Fluoranthene	ND		ug/l	0.400	1
Pyrene	ND		ug/l	0.400	1
Benzo(a)anthracene	ND	and the second s	ug/l	0.400	1
Chrysene	ND	the state of the s	ug/l	0.400	1
Benzo(b)fluoranthene	ND		ug/l	0.400	1
Benzo(k)fluoranthene	ND		ug/ī	0.400	1
Benzo(a)pyrene	ND		ug/l	0.200	1
Indeno(1,2,3-cd)Pyrene	ND	-	ug/l	0.400	1
Dibenzo(a,h)anthracene	ND		ug/l	0.400	1
Benzo(ghi)perylene	ND		ug/l	0.400	1

Project Name:

12 SWANTON ST

Lab Number:

L0618574

Project Number:

Not Specified

Report Date:

12/28/06

SAMPLE RESULTS

Lab ID:

L0618574-04

Client ID:

B104-MW

WINCHESTER, MA

Sample Location:

Date Collected:

12/19/06 14:36

Date Received:

12/20/06

Field Prep:

Not Specified

Parameter

Result

Qualifier Units

RDL

Dilution Factor

EPH with MS Targets

	Acceptance					
Surrogate	% Recovery	Qualifier	Criteria			
Chloro-Octadecane	47		40-140			
o-Terphenyl	67		40-140			
2-Fluorobiphenyl	72		40-140			
2-Bromonaphthalene	82		40-140			
O-Terphenyl-MS	90		40-140			

Project Name:

12 SWANTON ST

Lab Number:

L0618574

Project Number:

Not Specified

Report Date:

12/28/06

SAMPLE RESULTS

Lab ID:

L0618574-05

Client ID:

MW-1

Sample Location:

WINCHESTER, MA

Matrix:

Analyst:

Water

Anaytical Method:

59,VPH-04-1.1

Analytical Date:

Date Collected:

12/19/06 15:26

Date Received:

12/20/06

Field Prep:

Not Specified

Quality Control Information

Condition of sample received:

Aqueous Preservative:

Satisfactory

Laboratory Provided Preserved

Container Received on Ice

Sample Temperature upon receipt

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Petroleum Hydrocarbons					
C5-C8 Aliphatics	370		ug/l	50.0	1
C9-C12 Aliphatics	229		ug/l	50.0	1
C9-C10 Aromatics	111		ug/l	50.0	1
C5-C8 Aliphatics, Adjusted	370	A	ug/l	50.0	1
C9-C12 Aliphatics, Adjusted	118		ug/l	50.0	1
Benzene	ND		ug/l	2.00	1
Toluene	ND	and that games and a substitute is a substitute of the company of	ug/l	2.00	1
Ethylbenzene	ND		ug/l	2.00	1
p/m-Xylene	ND		ug/l	2.00	1
o-Xylene	ND		ug/l	2.00	1
Methyl tert butyl ether	ND		ug/l	3.00	. 1
Naphthalene	ND		ug/l	10.0	· 1

	Acceptance					
Surrogate	% Recovery	Qualifier	Criteria			
2,5-Dibromotoluene-PID	85		· 70-130			
2,5-Dibromotoluene-FID	88		70-130			

Project Name: 12 SWANTON ST

Project Number: Not Specified Lab Number:

L0618574

Report Date:

12/28/06

SAMPLE RESULTS

Lab ID:

L0618574-05

Client ID:

MW-1

Sample Location:

WINCHESTER, MA

Matrix:

Water

Anaytical Method: Analytical Date:

61,EPH-04-1 12/28/06 09:11

Analyst:

ΑJ

Date Collected:

12/19/06 15:26

Date Received:

12/20/06

Field Prep:

Not Specified EPA 3510C

Extraction Method: Extraction Date:

12/26/06 14:15

Quality Control Information

Condition of sample received:

Aqueous Preservative:

Satisfactory

Laboratory Provided Preserved

Container Received on Ice

Sample Temperature upon receipt:

Sample Extraction method:

Extracted Per the Method

EPH with MS Targets C9-C18 Aliphatics C19-C36 Aliphatics	ND ND		ua/l		
,			uaA	·	
C19-C36 Aliphatics	ND		ug/l	100	1
			ug/l	100	1
C11-C22 Aromatics	ND		ug/l	100	1
C11-C22 Aromatics, Adjusted	ND	•	ug/l	100	. 1
Naphthalene	0.569		ug/l	0:400	1
2-Methylnaphthalene	ND		ug/l	0.400	1
Acenaphthylene	ND		ug/l	0.400	1
Acenaphthene	ND		ug/l	0.400	1
Fluorene	ND		ug/l	0.400	1
Phenanthrene	ND		ug/i	0.400	1
Anthracene	ND		ug/I	0.400	1
Fluoranthene	ND		l\gu	0.400	1
Pyrene	ND		ug/l	0.400	1
Benzo(a)anthracene	ND		ug/l	0.400	1
Chrysene	ND		ug/l	0.400	1
Benzo(b)fluoranthene	ND	2000	ug/l	0.400	1
Benzo(k)fluoranthene	ND		ug/l	0.400	1
Benzo(a)pyrene	DN		ug/l	0.200	1
Indeno(1,2,3-cd)Pyrene	ND		ug/l	0.400	1
Dibenzo(a,h)anthracene	ND		ug/l	0.400	1
Benzo(ghi)perylene	ND		ug/l	0.400	1

Project Name:

12 SWANTON ST

Lab Number:

L0618574

Project Number: Not Specified Report Date:

12/28/06

SAMPLE RESULTS

Lab ID:

L0618574-05

Client ID:

MW-1

Sample Location:

WINCHESTER, MA

Date Collected:

12/19/06 15:26

Date Received:

12/20/06

Field Prep:

Not Specified

Parameter

Result

Qualifier

Units

RDL

Dilution Factor

EPH with MS Targets

		Acceptance						
Surrogate	% Recovery	Qualifier	Criteria					
Chloro-Octadecane	45		40-140					
o-Terphenyl	66		40-140					
2-Fluorobiphenyi	72		40-140					
2-Bromonaphthalene	85		40-140					
O-Terphenyl-MS .	87		40-140					

12 SWANTON ST

Lab Number:

L0618574

Project Number:

Not Specified

Report Date:

12/28/06

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date: 59,VPH-04-1.1 12/21/06 08:23

Analyst:

TT

arameter	Result	Qualifie	r Uı	nits	RDL.	
olatile Petroleum Hydrocarbons f	or sample(s):	01-05	Batch:	WĞ2	65055-3	
C5-C8 Aliphatics	ND		ı	l\gu	50.0	
C9-C12 Aliphatics	ND		ι	Jg/l	50.0	
C9-C10 Aromatics	ND		Ţ	Jg/l	50.0	
C5-C8 Aliphatics, Adjusted	ND			ıð\	50,0	
C9-C12 Aliphatics, Adjusted	ND		ı	Jg/l	50.0	
Benzene	ND			ng/l	2.00	
Toluene	ND			ug/l	2.00	
Ethylbenzene	ND		(Jg/l	2.00	
p/m-Xylene	· ND			l/gu	2.00	
o-Xylene	ND			ug/l	2.00	
Methyl tert butyl ether	ND		1	ug/l	3.00	
Naphthalene .	ND .		,	ug/l	10,0	

		Acceptance	
Surrogate	%Recovery	Qualifier	Criteria
	•		
2,5-Dibromotoluene-PID	92		70-130
2.5-Dibromotoluene-FID	96		70-130

Project Number:

12 SWANTON ST

Not Specified

Lab Number:

L0618574

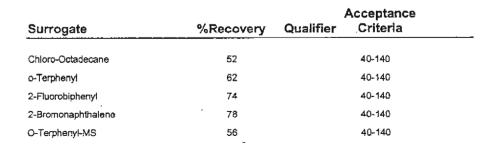
Report Date:

12/28/06

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date: 61,EPH-04-1 12/27/06 19:48

Analyst:


AJ

Extraction Method: EPA 3510C

Extraction Date:

12/26/06 14:15

arameter	Result	Qual	ifier Units	RDL	
PH with MS Targets for sample(s):	01-05	Batch:	WG265568-1		
C9-C18 Aliphatics	ND		ug/l	100	
C19-C36 Aliphatics	ND		ug/l	100	
C11-C22 Aromatics	ND		ug/l	100	
C11-C22 Aromatics, Adjusted	ND.		ug/i	100	
Naphthalene	ND		ug/l	0.400	
2-Methylnaphthaiene	ND		ug/l	0.400	
Acenaphthylene	ND		∪g/l	0.400	
Acenaphthene	ND		ug/l	0.400	-
Fluorene	ND		ug/l	0,400	
Phenanthrene	ND		ug/l	0.400	_
Anthracene	ND		ug/l	0.400	
Fluoranthene	ND		лд\J	0.400	
Pyrene	ND		ug/l	0.400	
Benzo(a)anthracene	ND		ug/1	0.400	
Chrysene	ND		. ug/l	0.400	
Benzo(b)fluoranthene	ND		ug/l	0.400	
Benzo(k)fluoranthene	ND		ug/l	0.400	
Benzo(a)pyrene	ND		ug/l	0.200	
Indeno(1,2,3-cd)Pyrana	ND		ug/l	0.400	
Dibenzo(a,h)anthracene	ND		ug/l	0,400	
Benzo(ghi)perylene	ND		ug/l	0.400	

L0618574 Lab Number:

> Not Specified Project Number:

12 SWANTON ST

Project Name:

12/28/06 Report Date:

	SOT	resp	%Recovery		
Parameter	%Recovery	%Recovery	Limits	RPD	RPD Limits
Malaille Detroloum Hydrogerhone	Secretated cample/el. 04.0	OLEY NAME ROPAN WOODRIGHT WOODRINES, 2	WG2BR055.2		and the first state of the first

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Volatile Petroleum Hydrocarbons Associated sample(s): 01	sociated sample(s): 01-05	Batch: WG265055-1	WG265055-2	ed attention of the control of the c	A STATE OF THE THE TANK THE TA
C5-C8 Aliphatics	107	101	70-130	Accounts (march contracts)	25
C9-C12 Aliphatics	105	96	70-130	o	25
C9-C10 Aromatics	101	100	70-130		25
Вепzеле	112	108	70-130	The second secon	25
Toluene	108	113	70-130	9	25
Ethylbenzene	104	103	70-130		25
p/m-Xylene	102	106	70-130	The second of th	25
o-Xylene	104	105	70-130	And the state of t	25
Methyl tert butyl ether	104	86	70-130		25
Naphthalene	16	98	70-130	And the state of t	25
1,2,4-Trimethylbenzene	102	100	70-130	2	25
Pentane	106	102	70-130	# + + + + + + + + + + + + + + + + + + +	25
2-Methylpentane	108	103	70-130	ġ.	25
2,2,4-Trimethytpentane	108	66	70-130		25
n-Nonane	108	87	30-130		25
n-Decane	86	- 16	70-130	8	25
n-Butylcyclohexane	109	66	70-130	10	25

L0618574 Lab Number:

12 SWANTON ST Not Specified Project Number: Project Name:

12/28/06 Report Date:

RPD %Recovery Limits Volatile Petroleum Hydrocarbons Associated sample(s): 01-05 Batch: WG265055-1 WG265055-2 LCSD %Recovery LCS %Recovery Parameter

RPD Limits

tance	30	30
Acceptan	70-130	70-130
LCSD %Recovery Qua	86	06
LCS %Recovery Qualifier	98	100
Surrogate	2,5-Dibromotoluene-PID	2,5-Dibromotoluene-FID

		2 25	25	7 25	25	25	25	14 25	14 25
	40-140	40-140	40-140	40-140	40-140	40-140	40-140	40-140	40-140
NG265568-2 WG265568-3	45	99	89	56	09	99	E33	49	64
-	42	55	73	90		7.4	58	62	70
EPH with MS Targets Associated sample(s): 01-05 Batch:	C9-C18 Aliphatics	C19-C36 Allphatics	C11-C22 Aromatics			Acenaphthylene	Acenaphthene		Phenanthrene

L0618574 12/28/06 Lab Number: Report Date:

12 SWANTON ST Not Specified Project Number: Project Name:

	SOT	TCSD	"Recovery		
Parameter	"Recovery	"Recovery	Limits	RPD	RPD Limits
			والمراقبة والمتعددة والمتعارض والمراقبة والمتعددة والمتعددة والمتعددة والمتعددة والمتعددة والمتعددة والمتعددة	The second secon	eneme, emele , pilite, pep e enement,menemente enemente enemente enemente enemente enemente enemente eneme

Parameter	"Recovery	Recovery "	Limits	RPD	RPD Limits
EPH with MS Targets Associated sample(s): 01-05	Batch:	WG265568-2 WG265568-3			en en en en en en en en en en en en en e
Anthracene	86	78	40-140	6	25
Fkloranthene	97	7.3	40-140	4	25
Pyrene	06	78	40-140	14	25
Benzo(a)anthracene	76	76	40-140	0	25
Chrysene	94	64	40-140	23	25
Benzo(b)fuoranttene		96	40-140	38	25
Benzo(k)fluoranthene	99	999	40-140	18	25
Вепго(а)ругеле	83	74	40-140		25
Indeno(1,2,3-cd)Pyrene	99	99	40-140	2	25
Dibenzo(a,h)anthracene	55	09	40-140	6	25
Benzo(ghi)perylene	52	256	40-140	9	25
Nonane (C9)	33	36	30-140	47	25
Decane (C10)	40	48	40-140	42	25
Dodecane (C12)	50	62	40-140	4	25
Tetradecane (C14)	54	53	40-140	4	25
Hexadecane (C16)	54	99	40-140	2	25
Octadecane (C18)	55	92	40-140	<u> </u>	25
Nonadecane (C19)	56	56	40-140	e.	25
Elcosane (C20)	56	2	40-140	2	25
Docosane (C22)	56	22	40-140	2	25
Tetracosane (C24)	58	29	40-140	2	25

L0618574 Lab Number:

Project Number:

Parameter

12 SWANTON ST

Project Name:

RPD Limits 12/28/06 Report Date: RPD %Recovery Limits LCSD %Recovery LCS %Recovery Not Specified

And a second control of the second property of the control of the	. 25	25		25
	0	Commence of the control of the contr	0	0
	40-140	40-140	40-140	40-140
WG265568-2 WG265568-3	58	56	55	1 :
atch:				
ted sample(s): 01-0	929	.65	55	999
EPH with MS Targets Associated sample(s): 01-05 B	Hexacosane (C26)	Octacosane (C28)		Hexatriaconiane (C36)

Surrogate	LCS %Recovery Qualifier	LCSD %Recovery Qualifier	Acceptance Criteria
hloro-Octadecane	40	42	40-140
o-Terphanyl	92	92	40-140
2-Fluorobiphenyl	77	65	40-140
2-Bromonaphthalene	7.8	72	40-140
O-Terphenyl-MS	29	65	40-140
% Naphthalene Breakthrough	0	0	
% 2-Methylnaphthalene Breakthrough	0	0	

12 SWANTON ST

Project Number: Not Sp

Not Specified

Lab Number:

L0618574

Report Date:

12/28/06

Fractionation Check Standard Quality Control

Fractionation check standard for FISH52618

arameter	% Recovery	QC Criteria
C9-C18 Aliphatics	62	40-140 `
C19-C36 Aliphatics	71	40-140
C11-C22 Aromatics	80	40-140
Naphthalene	74	40-140
2-Methylnaphthalene	70	40-140
Acenaphthylene	69	. 40-140
Acenaphthene	72	40-140
Fluorene	72	40-140
Phenanthrene	72	40-140
Anthracene	77	40-140
Fluoranthene	75	40-140
Pyrene	75	40-140
Benzo(a)anthracene	74	40-140
Chrysene	88	40-140
Benzo(b)fluoranthene	72	40-140
Benzo(k)fluoranthene	74	40-140
Benzo(a)pyrene	73	40-140
Indeno(1,2,3-cd)Pyrene	72	40-140
Dibenzo(a,h)anthracene	73	40-140
Benzo(g,h,i)perylene	73	40-140
Nonane	57	30-140
Decane	62	40-140
Dodecane	65	40-140
Tetradecane	63	40-140
Hexadecane	64	40-140
Octadecane	64	40-140
Nonadecane	64	40-140
Eicosane	67	40-140
Docosane	71	40-140
Tetracosane	72	40-140
Hexacosane	72	40-140
Octacosane	73	40-140
Triacontane	73	40-140
Hexatriacontane	76	40-140

Project Number:

12 SWANTON ST

Not Specified

Lab Number:

L0618574

Report Date:

12/28/06

Fractionation Check Standard Quality Control

Fractionation check standard for FISH52618

Surrogate	% Recovery	QC Criteria	
Chloro-Octadecane	57	40-140	
o-Terphenyl	_. 78	40-140	
2-Fluorobiphenyt	72	40-140	
2-Bromonaphthalene	72	40-140	

12 SWANTON ST

Project Number: Not Specified

Lab Number: L0618574

Report Date: 12/28/06

Sample Receipt and Container Information

Were project specific reporting limits specified?

YEŞ

Cooler Information

Cooler

Custody Seal

Α

Absent

Co	nta	ımer	Intol	rmai	uon	
_	_			_		

Container ID	Container Type	Cooler	рH	Temp	Pres	Seal	Analysis
L0618574-01A	Vial HCl preserved	Α	N/A	1.6 C	Υ	Absent	VPH-DELUX-04
L0618574-01B	Vial HCI preserved	Α	N/A	1.6 C	Υ	Absent	VPH-DELUX-04
L0618574-01C	Amber 1000ml BCl preserved	Α	<2	1.6 Ç	Υ	Absent	EPH-MS,EPHD-GC-04
L0618574-01D	Amber 1000ml HCl preserved	Α	<2	1,6 C	Υ	Absent	-·
L0618574-02A	Vial HCl preserved	Α	N/A	1,6 C	Υ	Absent	VPH-DELUX-04
L0618574-02B	Vial HCl preserved	Α	N/A	1.6 C	Υ	Absent	VPH-DELUX-04
L0618574-02C	Amber 1000ml HCl preserved	Α	<2	1.6 C	Υ	Absent	EPH-MS,EPHD-GC-04
L0618574-03A	Vial HCl preserved	Α	N/A	1.6 C	Υ	Absent	VPH-DELUX-04
L0618574-03B	Vial HCI preserved	Α	N/A	1.6 C	Υ	Absent	VPH-DELUX-04
10618574-03C	Amber 1000ml HCl preserved	. А	<2	1.6 C	Υ	Absent	EPH-MS,EPHD-GC-04
L0618574-04A	Vial HCl preserved	Α	N/A	1.6 C	Υ	Absent	VPH-DELUX-04
L0618574-04B	Vial HCl preserved	Α	N/A	1.6 C	Υ	Absent	VPH-DELUX-04
L0618574-04C	Amber 1000ml HCl preserved	Α	<2	1.6 C	Υ	Absent	EPH-MS, EPHD-GC-04
L0618574-05A	Vial HCl preserved	Α	N/A	1.6 C	Υ	Absent	VPH-DELUX-04
L0618574-05B	Viai HCl preserved	Α	N/A	1.6 C	Υ	Absent	VPH-DELUX-04
L0618574-05C	Amber 1000ml HCl preserved	Α	<2	1.6 C	Υ	Absent	EPH-MS,EPHD-GC-04

12 SWANTON ST

Lab Number:

L0618574

Project Number:

Not Specified

Report Date:

12/28/06

GLOSSARY

Acronyms

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD- Laboratory Control Sample Duplicate: Refer to LCS.

 MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

ND - Not detected at the reported detection limit for the sample.

 RDL - Reported Detection Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

<u>Terms</u>

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

The following data qualifiers have been identified for use under the CT DEP Reasonable Confidence Protocols.

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- J Estimated value. The analyte was tentatively identified; the quantitation is an estimation. (Tentatively identified compounds only.)

Report Format: Data Usability Report

12 SWANTON ST

Lab Number:

L0618574

Project Number:

Not Specified

Report Date:

12/28/06

REFERENCES

59 Method for the Determination of Volatile Petroleum Hydrocarbons (VPH). Massachusetts Department of Environmental Protection, DEA/ORS/BWSC. May 2004, Revision 1.1.

61 Method for the Determination of Extractable Petroleum Hydrocarbons (EPH). Massachusetts Department of Environmental Protection, DEA/ORS/BWSC. May 2004, Revision 1.1.

LIMITATION OF LIABILITIES

Alpha Woods Hole Labs performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Woods Hole Labs shall be to re-perform the work at it's own expense. In no event shall Alpha Woods Hole Labs be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Woods Hole Labs.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

								1.	2280618:14	
PLEASE ANSWER QUESTIONS ABOVE IS YOUR PROJECT MA MCP or CT RCP? FORMNC:01-01(rev 100CT-05)		Mw-	5 B107-MW	1. WW. 2 WW. 4 S S	ALPHA Lab ID (Lab Use Only) Sample ID	Ennell: USUL (D. COMCES) Well Date Due: 12 U These samples have been previously analyzed by Alpha Other Project Specific Requirements/Comments/Detection Limits:	Phone: 781 731 4455	Address: 35 Winthrop St	WESTBORD, MA RAYNHAM, MA TEL: 508-898-9220 TEL: 508-822-9200 FAX: 506-898-9193 FAX: 508-822-3286 Client Information	
Relinquished By: Date/Time Preservative Preservative Preservative	Continuo Tun		12/14/06 14/04 (5W SO	12/19/06 1314/ GW SO	Colection Sample Sampler's Date Time Matrix Initiats	Date Due: nents/Detection Lin	Turn-Around Time	Project Manager: Toxa Simmon	Project Information Project Agency 12 Syranton St Project Location: Winchester, MA	CHAIN OF CUSTODY FASE
B B B Redeived By: [2/20] 7 Date	>		7.7		EVE	ANALYSIS	Deres ☐ No Are MCP Arelytical Methods Required? ☐ Yes ☑ No Are CT RCP (Reasonable Confidence P	State /Fed Program Culteria Culteria Culteria Culteria	n - Data De A-ÉMAIL D Add'l Delw	Date Rec'd in Lab: 12/20
rhease prink clearly, reglary and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are subject to Alpha's Payment Terms. See reverse side.					ments	SAMPLE HANDLING Filtration Li Done Not needed Li ab to do Preservation Li Lab to do Ci Lab to do	\re MCP Aralytical Methods Required? re CT RCP (Reasonable Confidence Protocols) Required?	Collegia Grown TIVE CERTAINTY CTREASONABLE CONFIDENCE PROTOCOLS	Billing Information ☐ Same as Client info PO#:	ALPHA Job#: Loceles 74

Report Date: 07-Mar-05 15:20

Final Report Re-Issued Report Revised Report

Laboratory Report

REMSERV, Inc. 35 Winthrop Street Winchester, MA 01890

Attn: Tom Simmons

· Project: Bossi's-12 Swanton St-MA

Project #: [none]

Laboratory ID	Client Sample ID	Matrix	Date Sampled	Date Réceived
SA24677-01	B101 S4 13-15	Soil	28-Feb-05 00:00	01-Mar-05 14:50
SA24677-02	B102 S1B 11.5-12	Soil	28-Feb-05 00:00	01-Mar-05 14:50
SA24677-03	B103 S1 13-15	Soil	28-Feb-05 00:00	01-Mar-05 14:50
SA24677-04	B104 S1 13-15	Soil	28-Feb-05 00:00	01-Mar-05 14:50

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. All applicable NELAC requirements have been met.

Please note that this report contains 17 pages of analytical data plus Chain of Custody document(s).

This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Massachusetts Certification # M-MA138/MA1110 Connecticut # PH-0777

Florida # E87600/E87936

Maine # MA138

New Hampshire # 2538/2972

New York # 11393/11840

Rhode Island # 98

USDA # S-51435

Vermont # VT-11393

Hanibal (Tayeh, Ph.D.
President Laboratory Director

uthorized b

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method indicated. Please refer to our "Quality" webpage at www.spectrum-analytical.com for a full listing of our current certifications.

B101 S4 SA24677		Ω	lient Project # [none]	<u>Matr</u> Soi	_	Collection Date/Time 28-Feb-05 00:00			Received 01-Mar-05		
CAS No.	Analyte(s)	Result	*RDL/Units	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analys	Flag	
Volatile	Organic Compounds VOC Extraction	Field extracte	d N/A	1	VOC	01-Mar-05	01-Mar-05	5030088	ES	-	
VPH Ali	phatic/Aromatic Carbon Rang	res	Prepared by meth	od VPH						VOCIO	
	C5-C8 Aliphatic Hydrocarbons		1.34 mg/kg dry	100	+MADEP 5/2004 Rev. 1.1	03-Mar-05	03-Mar-05	5030179	ss		
	C9-C12 Aliphatic Hydrocarbons	6.08	0.446 mg/kg dry	100	н	н	M	•	r		
	C9-C10 Aromatic Hydrocarbons	8.66	0.446 mg/kg dry	100 .	"	11	*1	*1	n		
	Unadjusted C5-C8 Aliphatic Hydrocarbons	16.7	1.34 mg/kg dry	100	н	"	71	π .	n		
	Unadjusted C9-C12 Aliphatic Hydrocarbons	14.7	0.446 mg/kg dry	100	"	*	47	4	11		
VPH Tai	rget Analytes		Prepared by meth	od VPH						VOC10	
71-43-2	Benzene	BRL	89.3 μg/kg dry	100	11	n	*1	н	11		
100-41-4	Ethylbenzene	BRL	89.3 μg/kg dry	100	11 '	n	**	•	*1		
1634-04-4	Methyl tert-butyl ether	BRL	89.3 μg/kg dry	100	11	ri	ir .		**		
91-20-3	Naphthalene	332	89.3 μg/kg dry	100	н	n	"	**	"		
108-88-3	Toluene	140	89.3 µg/kg dry	100	n	•		**	19		
1330-20-7	m,p-Xylene	BRL	179 µg/kg dry	100	n	4	н	#1	n		
95-47-6	o-Xylene	BRL	89.3 µg/kg dry	100	n	**		ir	n		
Surrogate	e recoveries:										
615-59-8	2,5-Dibromotoluene (FID)	118	70-130 %		н	*	**		*		
615-59-8	2,5-Dibromotoluene (PID)	104	70-130 %		•	•	*	**	•		
Extracts	able Petroleum Hydrocarboi	ns									
	phatic/Aromatic Ranges		Prepared by meth	od SW8	46 3545A						
	C9-C18 Aliphatic	BRL	29.6 mg/kg dry	1	+MADEP 5/2004 R	03-Mar-05	06-Mar-05	5030185	M.B		
	Hydrocarbons C19-C36 Aliphatic Hydrocarbons	BRL	29.6 mg/kg dry	1	17	11	н	11	н		
	C11-C22 Aromatic Hydrocarbons	BRL	29.6 mg/kg dry	1	"	"	N	11	n		
	Unadjusted C11-C22 Aromatic Hydrocarbons	BRL	29.6 mg/kg dry	1	n	"		н	"		
	Total Petroleum Hydrocarbons	BRL	29.6 mg/kg dry	1	n	*1	11	r	н		
	Unadjusted Total Petroleum Hydrocarbons	BRL	29.6 mg/kg dry	1	"	11	•	" .	н		
EPH Ta	rget PAH Analytes		Prepared by meth	od SW8	46 3545 A						
91-20-3	Naphthalene	BRL	147 μg/kg dry	1	н ,	h	r	**	**		
91-57-6	2-Methylnaphthalene	162	147 μg/kg dry	1	"	n	II.	w	**		
208-96-8	Acenaphthylene	BRL	147 μg/kg dry	1	н	19	n	*1	"		
83-32-9	Acenaphthene	BRL	147 μg/kg dry	1	"	n	н	n	"		
86-73-7	Fluorene	BRL	147 μg/kg dry	1	"		**	n	н		
85-01-8	Phenanthrenė	BRL ·	147 μg/kg dry	1	"	n	н	"	*1		
120-12-7	Anthracene	BRL	147 μg/kg dry	1	**	- н	*1	п	11		

 $147~\mu g/kg~dry$

147 μg/kg dry

 $147~\mu g/kg~dry$

147 μg/kg **d**ry

 $147~\mu g/kg~dry$

1

1

1

1 · 1

BRL

BRL

BRL

BRL

BRL

Fluoranthene

Benzo (a) anthracene

Benzo (b) fluoranthene

Pyrene

Chrysene

206-44-0

129-00-0

56-55-3

218-01-9

205-99-2

Sample Identification B101 S4 13-15 SA24677-01

Client Project # [none]

<u>Matrix</u> Soil Collection Date/Time 28-Feb-05 00:00 Received 01-Mar-05

CAS No.	Analyte(s)	Result	*RDL/Units	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analyst Fla
Extracta	able Petroleum Hydrocarl	oons							
EPH Tai	rget PAH Analytes		Prepared by meth	nod SW8	46 3545A				
207-08-9	Benzo (k) fluoranthene	BRL	147 μg/kg dry	1	+MADEP 5/2004 R	03-Mar-05	06-Mar-05	5030185	M.B
50-32-8	Benzo (a) pyrene	BRL	147 μg/kg dry	1	**	"	n	**	ν
193-39-5	Indeno (1,2,3-cd) pyrene	BRL	147 μg/kg dry	1	11	**	P	r.	n
53-70-3	Dibenzo (a,h) anthracene	BRL	147 μg/kg dry	1	R	"	"	n	**
191-24-2	Benzo (g,h,i) perylene	BRL	147 μg/kg dry	I	"	н	"	11	11
Surrogate	e recoveries:	·				- Lann			
3386-33-2	1-Chlorooctadecane	61.0	40-140 %		н	P	•	n	**
84-15-1	Ortho-Terphenyl	68.3	40-140 %		**	n	n	**	- и
580-13-2	2-Bromonaphthalene	65. I	40-140 %		•	11	"	n	P
321-60-8	2-Fluorobiphenyl	76.6	40-140 %		п	It	н	n	н
General	Chemistry Parameters								
	% Solids	89.9	%	1	SM2540 G Mod.	01-Mar-05	02-Mar-05	5030086	AJ

Sample Identification B102 S1B 11.5-12 SA24677-02				Client Project # Matrix [none] Soil		Collection Date/Time 28-Feb-05 00:00			Received 01-Mar-05		
CAS No.	Analyte(s)	Result	*RDL/Units	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analyst Fla		
Volatile	Organic Compounds VOC Extraction	Field extracted	i N/A	1	VOC	01-Mar-05	01-Mar-05	5030088	ES		
VPH Alir	phatic/Aromatic Carbon Rang	es	Prepared by meth	od VPH							
	C5-C8 Aliphatic Hydrocarbons		0.940 mg/kg dry		+MADEP	03-Mar-05	03-Mar-05	5030179	SS		
					5/2004 Rev. 1.1						
	C9-C12 Aliphatic Hydrocarbons	BRL	0.313 mg/kg dry		"		"	,,			
	C9-C10 Aromatic Hydrocarbons	BRL	0.313 mg/kg dry								
	Unadjusted C5-C8 Aliphatic Hydrocarbons	BRL	0.940 mg/kg dry	50	17	h	II	н	it		
	Unadjusted C9-C12 Aliphatic Hydrocarbons	BRL	0.313 mg/kg dry	50	π	n	IF	н	#		
VPH Tar	rget Analytes		Prepared by meth	od VPH							
71-43-2	Benzene	BRL	62.7 μg/kg dry	50	n	. **	*	. 11	12		
100-41-4	Ethylbenzene	BRL	62.7 μg/kg dry	50	н	"	h	,	14		
1634-04-4	Methyl tert-butyl ether	BRL	62.7 μg/kg dry		11	н	"	h	76		
91-20-3	Naphthalene	BRL	62.7 μg/kg dry		н	"	n	н	*		
108-88-3	Toluene	BRL	62.7 μg/kg dry		ш	н	n	n	n		
1330-20-7	m,p-Xylene	BRL	125 μg/kg dry		н	"	11		п		
95-47-6	-	BRL	. 62.7 μg/kg dry		н	"	*1	11	n		
Carrogate	e recoveries:										
615-59-8	2,5-Dibromotoluene (FID)	115	70-130 %		**	r	,,	*1	H		
615-59-8	2,5-Dibromotoluene (PID)	102	70-130 %		"	*	"	**	и .		
Extusate	able Petroleum Hydrocarbo										
	phatic/Aromatic Ranges	15	Prepared by met	od 03179	246 2545 A						
<u>ЕГП АЦ</u>						00.14 04	0616 05		. (5		
	C9-C18 Aliphatic Hydrocarbons	BRL	30.0 mg/kg dry		+MADEP 5/2004 R	03-Mar-05	06-Mar-05	5030185			
	C19-C36 Aliphatic Hydrocarbons	BRL	30.0 mg/kg dry		**	"	"	P	н		
	C11-C22 Aromatic Hydrocarbons	BRL	30.0 mg/kg dry	1	*1	г.	v	"	"		
	Unadjusted C11-C22 Aromatic Hydrocarbons	BRL	30.0 mg/kg dry	, 1	*	Ħ	41	le .	н		
	Total Petroleum Hydrocarbons	BRL	30.0 mg/kg dry	, 1	n	**	41	*1	**		
	Unadjusted Total Petroleum Hydrocarbons	BRL	30.0 mg/kg dry	, 1	н	"	n	*1	41		
ЕРН Та	rget PAH Analytes		Prepared by met	hod SW8	346 3545A						
91-20-3	Naphthalene	BRL	. 149 μg/kg dry		н	4	**	н	11		
91-57-6	2-Methylnaphthalene	BRL	149 μg/kg dry		tr .	11	н	•	44		
208-96-8	Acenaphthylene	BRL	149 μg/kg dry		"	ч	n	"	м		
83-32-9	Acenaphthene	BRL	149 µg/kg dry		11	"	H	n ·	71		
86-73-7	Fluorene	BRL	149 μg/kg dry		"	ь	n	н	*1		
85-01-8	Phenanthrene	BRL	149 µg/kg dry		11		**	**	*1		
120-12-7	Anthracene	BRL	149 μg/kg dry		н	#	11	u	31		
206-44-0	Fluoranthene	BRL	149 µg/kg dry		r	•	**	**	11		
129-00-0	Pyrene	BRL	149 μg/kg dry		12		**	11	W		
56-55-3	Benzo (a) anthracene	BRL	149 μg/kg dry		*	*1	"	и			
218-01-9	Chrysene	BRL	· 149 μg/kg dry		R	*1	н	rı	и		
205-99-2	Benzo (b) fluoranthene	BRL	149 μg/kg dry		v	•	n	"	n		

Sample Identification B102 S1B 11.5-12 SA24677-02

Client Project # [none]

<u>Matrix</u> Soil Collection Date/Time 28-Feb-05 00:00 Received 01-Mar-05

CAS No.	Analyte(s)	Result	*RDL/Units	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analysi	Flag
Extract	able Petroleum Hydrocarl	ons								
EPH Ta	rget PAH Analvtes		Prepared by meth	nod SW8	46 3545A					
207-08-9	Benzo (k) fluoranthene	BRL	149 μg/kg dry	1	÷MADEP 5/2004 R	03-Mar-05	06-Mar-05	5030185	M.B	
50-32-8	Benzo (a) pyrene	BRL	149 μg/kg dry	1	**	**	**	н	4	
193-39-5	Indeno (1,2,3-cd) pyrene	BRL	149 μg/kg dry	1	41	n	Î	*1	71	
53-70-3	Dibenzo (a,h) anthracene	BRL	149 μg/kg dry	1	n	"	ч	n	P	
191-24-2	Benzo (g,h,i) perylene	BRL	149 μg/kg dry	1	n	н	n	н	н	
Swrogate	e recoveries:	<u> </u>								
3386-33-2	1-Chlorooctadecane	76.7	40-140 %		n	*1	**	II*		
84-15-1	Ortho-Terphenyl	73. 3	40-140 %		11	II.	н	•	ч	
580-13-2	2-Bromonaphthalene	60.9	40-140 %		P	"	•	IT	IT	
321-60-8	2 - Fluorobiphenyl	77.6	40-140 %		"	Ir	*	tt	n	
General	Chemistry Parameters	-								
	% Solids	90.8	%	1	SM2540 G Mod.	01-Mar-05	02-Mar-05	5030086	i AJ	

<u>Sample I</u> B103 S1 SA24677		<u>Cli</u>	ent Project # [none]	<u>Matr</u> Soi		l <u>ection Da</u> 8-Feb-05		<u>Received</u> 01-Mar-05		
CAS No.	Analyte(s)	Result	*RDL/Units	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analys	t Flag
Volatile	Organic Compounds									
	VOC Extraction	Field extracted	N/A	1	voc	01-Mar-05	01-Mar-05	5030088	ES	
VPH Alij	phatic/Aromatic Carbon Rang	<u>es</u>	Prepared by meth	od VPH						VOC10
	C5-C8 Aliphatic Hydrocarbons	639	22.4 mg/kg dry	2000	+MADEP 5/2004 Rev. 1.1	03-Mar-05	03-Маг-05	5030179	ss	
	C9-C12 Aliphatic Hydrocarbons	217	7.48 mg/kg dry	2000	н .	p	11	17	n	
	C9-C10 Aromatic Hydrocarbons	280	7.48 mg/kg dry	2000	"	¥	Þ	**	"	
	Unadjusted C5-C8 Aliphatic Hydrocarbons	832	22.4 mg/kg dry	2000	н	n .	н	н	II	
	Unadjusted C9-C12 Aliphatic Hydrocarbons	497	7.48 mg/kg dry	2000	11	•	11	ıı	н	
VPH Tar	rget Analytes		Prepared by meth	od VPH						VOC10
71-43-2	Benzene	1,750	748 μg/kg dry	2000	11				. ,	
100-41-4	Ethylbenzene	24,200	748 μg/kg dry	2000	11	н	*1	**	Ħ	
1634-04-4	Methyl tert-butyl ether	BRL	748 μg/kg dry	2000	11	n	п	**		
91-20-3	Naphthalene	9,550	748 μg/kg dry	2000	11	и	rl	"	n	
108-88-3	Toluene	39,600	748 μg/kg dry	2000	**	п	п	"	н	
1330-20-7	m,p-Xylene	92,400	1500 μg/kg dry	2000	11		4	11	η	
95-47-6	o-Xylene	35,400	748 μg/kg dry	2000	ır	•	**	"	н	
		33,400	140 µg/kg diy	-						
615-59-8	e recoveries: 2,5-Dibromotoluene (FID)	110	70-130 %		H			**	н	
615-59-8	2,5-Dibromotoluene (PID)	97.0	70-130 % 70-130 %		11		•	**	,	
			70-130 76							
	able Petroleum Hydrocarbon	ns								
<u>EPH Ali</u>	phatic/Aromatic Ranges		Prepared by meth	nod SW8	46 3545A					
	C9-C18 Aliphatic Hydrocarbons	43.3	35.3 mg/kg dry	1	+MADEP 5/2004 R	03-Mar-05	06-Mar-05	5030185	M.B	
	C19-C36 Aliphatic Hydrocarbons	BRL	35.3 mg/kg dry		"	н	ч	"	н	
	C11-C22 Aromatic Hydrocarbons	40.6	35.3 mg/kg dry	1	gs ⁴⁴	•	. 4	"	н	
	Unadjusted C11-C22 Aromatic Hydrocarbons	48.5	35.3 mg/kg dry	1	**	н	п	*1	н	
	Total Petroleum Hydrocarbons	84.0	35.3 mg/kg dry	1	**	n	н	**	"	
	Unadjusted Total Petroleum Hydrocarbons	91.9	35.3 mg/kg dry	1	"	rl	н	п	IJ	
EPH Ta	rget PAH Analytes		Prepared by meti	nod SW8	346 3545A					
91-20-3	Naphthaiene	3,920	176 μg/kg dry		Ŋ	н	4	11	н	
91-57-6	2-Methy Inaphthalene	3,990	176 μg/kg dry		n	**	N	- 11	н	
208-96-8	Acenaphthylene	BRL	176 μg/kg dry		н	n	н	*1	н	
83-32-9	Acenaphthene	BRL	176 μg/kg dry		4	н	н	*1	н	
86-73-7	Fluorene	BRL	176 μg/kg dry		11	"	н	"	н	
85-01-8	Phenanthrene	BRL	176 μg/kg dry		н	ri	н	"	*)	
120-12-7	Anthracene	BRL	176 µg/kg dry		PF .	п	п	**	"	
206-44-0	Fluoranthene	BRL	176 μg/kg dry		17	н	n	**	н	
129-00-0	Pyrene	BRL	176 μg/kg dry		н	11	n	"	11	
56-55-3	Benzo (a) anthracene	BRL	176 μg/kg dry		Ħ	"	rr	*1	"	
20-22-2										
218-01-9	Chrysene	BRL	176 μg/kg dry	1	. н	n	11	*1	n	

Sample Identification
B103 S1 13-15
SA24677-03

Client Project # [none]

<u>Matrix</u> Soil - Collection Date/Time 28-Feb-05 00:00 Received 01-Mar-05

CAS No.	Analyte(s)	Result	*RDL/Units	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analyst Flag
Extracta	able Petroleum Hydrocarl	oons							
EPH Ta	rget PAH Analytes		Prepared by meth	od SW8	46 3545A				
207-08-9	Benzo (k) fluoranthene	BRL	176 μg/kg dry	1	+MADEP 5/2004 R	03-Mar-05	06-Mar-05	5030185	• м.в
50-32-8	Benzo (a) pyrene	BRL	176 μ g/ kg dry	1	"	n	II .	n	н
193-39-5	Indeno (1,2,3-cd) pyrene	BRL	176 μg/kg dry	1	11	17	н	P	r
53-70-3	Dibenzo (a,h) anthracene	BRL	176 µg/kg dry	1	u	"	91	н	н
191-24-2	Benzo (g,h,i) perylene	BRL	176 μg/kg dry	1	•	"	II.	н	н
Surrogat	e recoveries:		<u> </u>						
3386-33-2	1-Chlorooctadecane	53.7	40-140 %		lı	*1	"	н	11
84-15-1	Ortho-Terphenyl	56.0	40-140 %		"	4	"	н	11
580-13-2	2-Bromonaphthalene	53.0	40-140 %		H	TP.	н		n
321-60-8	2-Fluorobiphenyl	76.8	40-140 %		n	"	п	**	n
Genera	l Chemistry Parameters								
	% Solids	91.9	%	1	SM2540 G Mod.	01-Mar-05	02-Mar-05	5030086	AJ

B104 S1 SA24677		<u>Cli</u>	ent Project # [none]	<u>Matr</u> Soi	_	lection Da 8-Feb-05			eceived -Mar-0	_
	Analyte(s)	Result	*RDL/Units	Dilution	Method Ref.	Prepared	Analyzed	Baich	Analysi	Flag
Volatile	Organic Compounds		-							
	VOC Extraction	Field extracted	N/A	. 1	VOC	01-Mar-05	01-Mar-05	5030088	ES	
VPH Alii	phatic/Aromatic Carbon Rang	res	Prepared by meth	od VPH						VOC1
	C5-C8 Aliphatic Hydrocarbons		11.9 mg/kg dry	1000	+MADEP 5/2004 Rev. 1.1	03-Mar-05	03-Mar-05	5030179	ss	
	C9-C12 Aliphatic Hydrocarbons	350	3.96 mg/kg dry	1000	η	n	н	71	Я	
	C9-C10 Aromatic Hydrocarbons	216	3.96 mg/kg dry	1000	и .	rr	н	'n	*	
	Unadjusted C5-C8 Aliphatic Hydrocarbons	1,150	11.9 mg/kg dry	1000	н	"	н	н	,,	
	Unadjusted C9-C12 Aliphatic Hydrocarbons	565	3.96 mg/kg dry	1000	#	и	я	"	н	
VPH Tai	rget Anal <u>ytes</u>		Prepared by meth	od VPH						VOC1
71-43-2	Benzene	BRL	• •	1000	· n	**	n	н	11	
100-41-4	Ethylbenzene	2,720	793 μg/kg dry 793 μg/kg dry	1000	ш	ir .	**	м .	и	
1634-04-4	Methyl tert-butyl ether	BRL	793 µg/kg dry	1000		*	11			
91-20-3	, ,			1000		11	*		ħ	
108-88-3	Naphthalene Toluene	5,820	793 μg/kg dry	1000	**		н	*1	ч	
1330-20-7		5,990	793 μg/kg dry 1590 μg/kg dry	1000		71	**		u	
95-47-6	m,p-Xylene	9,100 2,620	793 µg/kg dry	1000	н		п	Ħ	н	
	o-Xylene		733 µg/kg til y				 —			
Surrogate 615-59-8	e recoveries:	101	70-130 %		"	н		**	н	
615-59-8	2,5-Dibromotoluene (FID)	91.6	70-130 % 70-130 %		, c	н	**	11		
	2,5-Dibromotoluene (PID)		70-130 70							
	able Petroleum Hydrocarbo	ns.								
<u>EPH Ali</u>	iphatic/Aromatic Ranges		Prepared by meth	nod SW8	346 3545A					
	C9-C18 Aliphatic Hydrocarbons	129	36.1 mg/kg dry	1	+MADEP 5/2004 R	70 1012 01	06-Mar-05	5030185		
	C19-C36 Aliphatic Hydrocarbons	BRL	36.1 mg/kg dry	· 1	11	n	n	11	II	
	C11-C22 Aromatic Hydrocarbons	57.3	36.1 mg/kg dry	1	r	*	IT	*	н	
	Unadjusted C11-C22 Aromatic Hydrocarbons	59.5	36.1 mg/kg dry	1	•	"	"	ь	"	
	Total Petroleum Hydrocarbons	200	36.1 mg/kg dry	1	n	11	17	"	"	
	Unadjusted Total Petroleum Hydrocarbons	202	36.1 mg/kg dry	, 1	"	,	ч	н	"	
EPH Ta	rget PAH Analytes		Prepared by metl	hod SW8	846 3545A					
91-20-3	Naphthalene	642	180 μg/kg dry		**	"	78	"	kr	
91-57-6	2-Methylnaphthalene	1,660	180 μg/kg dry		n	1)	u	#1	**	
208-96-8	Acenaphthylene	BRL	180 μg/kg dry		#i	ч	"	н	**	
83-32-9	Acenaphthene	BRL	180 µg/kg dry		н	17	**	ч	п	
86-73-7	Fluorene	BRL	180 μg/kg dry		h	н	н	11	"	
85-01-8	Phenanthrene	BRL	180 μg/kg dry	1	н	н	41	н	ır	
120-12-7	Anthracene	BRL	180 μg/kg dry	1	4	11	11	"	"	
206-44-0	Fluoranthene	BRL	180 μg/kg dry	1	*.	н	n	11	*1	
129-00-0	Pyrene	BRL	180 μg/kg dry	1	п	н	Ħ	**	ıı	
56-55-3	Benzo (a) anthracene	BRL	18 0 μg/kg dry	1 .	**	•	н	"	11	
218-01-9	Chrysene	BRL	180 μg/kg áry	1	45	**	**	**	н	
		DD*	100 7 1	,	4	ч	н	11		

180-µg⁄kg dfy

BRL

Benzo (b) fluoranthene

205-99-2

1

Sample Identification B104 S1 13-15 SA24677-04

Client Project # [none]

<u>Matrix</u> Soil Collection Date/Time 28-Feb-05 00:00 Received 01-Mar-05

CAS No.	Analyte(s)	Result	*RDL/Units	Dillution	Method Ref.	Prepared	Analyzed	Batch	Analyst Flag
Extracta	able Petroleum Hydrocarl	ons							
EPH Tai	rget PAH Analytes		Prepared by meth	od SW8	46 3545A				
207-08-9	Benzo (k) fluoranthene	BRL	180 μg/kg dry	1	÷MADEP 5/2004 R	03-Mar-05	06-Mar-05	5030185	M.B
50-32-8	Benzo (a) pyrene	BRL	180 μg/kg dry	1	**	11	н	11	. "
193-39-5	Indeno (1,2,3-cd) pyrene	BRL	180 µg/kg dгу	1	н		Ħ	11	H
53-70-3	Dibenzo (a,h) anthracene	BRL	180 μg/kg dry	1	ч	11	**	**	11
191-24-2	Benzo (g,h,i) perylene	BRL	180 μg/kg dry	1	11	Ħ	н	11	II
Surrogate	e recoveries:								
3386-33-2	I-Chlorooctadecane	109	40-140 %		IT	н	11	Ħ	ų
84-15-1	Ortho-Terphenyl	71.2	40-140 %		Ŋ	н	и	l+	Iţ
580-13-2	2-Bromonaphthalene	56.5	40-140 %		n .	77	п	u	н
321-60-8	2-Fluorobiphenyl	78.7	40-140 %		ţ1	41	n	п	n
General	Chemistry Parameters								
	% Solids	89.2	%	1	SM2540 G Mod.	01-Mar-05	02-Mar-05	5030086	AJ

Volatile Organic Compounds - Quality Control

Analyte(s)	Result	*RDL Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch 5030179 - VPH							-		
Blank (5030179-BLK1)			Prepared	& Analyze	ed: 03-Ma	r-05			
C5-C8 Aliphatic Hydrocarbons	BRL	0.750 mg/kg wet				. 00			
C9-C12 Aliphatic Hydrocarbons	BRL	0.250 mg/kg wet							
C9-C10 Aromatic Hydrocarbons	BRL	0.250 mg/kg wet							
Unadjusted C5-C8 Aliphatic Hydrocarbons	BRL	0.750 mg/kg wet							
Unadjusted C9-C12 Aliphatic Hydrocarbons	BRL	0.250 mg/kg wet							
Benzene	BRL	50.0 µg/kg wet							
Ethylbenzene	BRL	50.0 μg/kg wet							
Methyl tert-buryl ether	BRL	50.0 µg/kg wet							
Naphthalene	BRL	50.0 μg/kg wet							
Toluene	BRL	50.0 µg/kg wet							
m,p-Xylene	BRL	100 µg/kg wet							
o-Xylene	BRL	50.0 μg/kg wct							
Surrogate: 2,5-Dibromotoluene (FID)	65.0	μg/kg wet	50.0		130	70-130	_		
Surrogate: 2,5-Dibromotoluene (PID)	58.3	μg/kg wet μg/kg wet	50.0		117	70-130 70-130			
LCS (5030179-BS1)		7.0		& Analyza					
C5-C8 Aliphatic Hydrocarbons	170	mg/kg wet	180		94.4	70-130			
C9-C12 Aliphatic Hydrocarbons	59.1	mg/kg wet	80.0		73.9	70-130			
C9-C10 Azomatic Hydrocarbons	32.2	mg/kg wet	30.0		107	70-130			
Unadjusted C5-C8 Aliphatic Hydrocarbons	278	mg/kg wet	320		86.9	70-130			
Unadjusted C9-C12 Aliphatic Hydrocarbons	91.4	mg/kg wet	110		83.1	70-130			
Benzene	15.2	μg/kg wet	20.0		76.0	70-130			
Ethylbenzene	15.1	μg/kg wet	20.0		75.5	70-130			
Methyl tert-butyl ether	16.5	μg/kg wet	20.0		82.5	70-130			
Naphthalene	18.1	μg/kg wet	20.0		90.5	70-130			
Toluene	15.2	μg/kg wet	20.0		76.0	70-130			
m,p-Xylene	30.1	μg/kg wet	40.0		75.2	70-130			
o-Xylene	15.4	μg/kg wet	20.0		77.0	70-130			
2-Methylpentane	15.5	µg/kg wet	20.0		77.5	70-130			
n-Nonane	14.8	μg/kg wet	20.0		74.0	70-130			
n-Pentane	16.3	μg/kg wet	20.0		81.5	70-130			
1,2,4-Trimethylbenzene	15.9	μg/kg wet	20.0		79.5	70-130			
2,2,4-Trimethylpentane	15.5		20.0		77.5	70-130			
n-Butyleyclohexane	15.7	μg/kg wet μg/kg wet	20.0		78.5	70-130			
n-Decane	16.2	μg/kg wet	20.0		81.0	70-130			
Surrogate: 2,5-Dibromotoluene (FID)	62.9	μg/kg wet	50.0		126	70-130			
Surrogate: 2,5-Dibromotoluene (PID)	55.6	µg∕kg wet	50.0	0- A1	III	70-130			
LCS Dup (5030179-BSD1)				& Analyz					
C5-C8 Aliphatic Hydrocarbons	159	mg/kg wet	180		88.3	70-130	6.68	25	
C9-C12 Aliphatic Hydrocarbons	58.0	mg/kg wet	80.0		72.5	70-130	1.91	25	
C9-C10 Aromatic Hydrocarbons	28.0	mg/kg wet	30.0		93.3	70-130	13.7	2.5	
Unadjusted C5-C8 Aliphatic Hydrocarbons	262	mg/kg wet	320		81.9	70-130	5.92	25	
Unadjusted C9-C12 Aliphatic Hydrocarbons	86.0	mg/kg wet	110		78.2	70-130	6.08	25	
Benzene	14.9	μg/kg wet	20.0		74.5	70-130	1.99	25	
Ethylbenzene	14.2	μg/kg wet	20.0		71.0	70-130	6.14	25	
Methyl tert-butyl ether	17.0	μg/kg wet	20.0		85.0	70-130	2.99	25	
Naphthalene	16.9	μg/kg wet	20.0		84.5	70-130	6.86	25	
Toluene	14.4	μg/kg wet	20.0		72.0	70-130	5.41	25	
m,p-Xylene	28.1	μg/kg wet	40.0		70.2	70-130	6.88	25	
o-Xylene	14.5	μg/kg wet	20.0		72.5	70-130	6.02	25	
2-Methylpentane	14.5	μg/kg wet	20.0		72.5	70-130	6.67	25	
n-Nonane	14.3	μg/kg wet	$\bar{2}\bar{0}.\bar{0}$		71.5	70-130	3.44	25	

Volatile Organic Compounds - Quality Control

Analyte(s)	Result	*RDL Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
	XCSUIT	RDE Onis	Devel	, cesuit	701000	Limits	10.10	Dillin	1 142
Batch 5030179 - VPH									
LCS Dup (5030179-BSD1)			Ргерагед	& Analyz	ed: 03-Ma	r-05			
n-Pentane	15.0	μg/kg wet	20.0		75.0	70-130	8.31	25	
1,2,4-Trimethylbenzene	14.7	μg/kg wet	20.0		73.5	70-130	7.84	25	
2,2,4-Trimethylpentane	14.2	μg/kg wet	20.0		71.0	70-130	8.75	25	
n-Butylcyclohexane	15.2	μg/kg wet	20.0		76.0	70-130	3.24	25	
n-Decane .	15.4	μg/kg wet	20.0		77.0	70-130	5.06	. 25	
Surrogate: 2,5-Dibromotoluene (FID)	54.0	μg/kg wet	50.0		108	70-130			
Surrogate: 2,5-Dibromotoluene (PID)	47.0	μg/kg wet	50.0		94.0	70-130			
Duplicate (5030179-DUP1)	Sou	rce: SA24708-01	Prepared	& Analyz	ed: 03-Ma	r-05			
C5-C8 Aliphatic Hydrocarbons	7.88	0.907 mg/kg dry		6.48			19.5	50	
C9-C12 Aliphatic Hydrocarbons	3.65	0.302 mg/kg dry		2.81			26.0	50	
C9-C10 Aromatic Hydrocarbons	1.37	0.302 mg/kg dry		1.33			2.96	50	
Unadjusted C5-C8 Aliphatic Hydrocarbons	8.68	0.907 mg/kg dry		7.25			18.0	50	
Unadjusted C9-C12 Aliphatic Hydrocarbons	5.02	0.302 mg/kg dry		4.13			19.5	50	
Benzene	BRL	60.5 µg/kg dry		BRL				50	
Ethylbenzene	BRL	60.5 μg/kg dry		BRL				50	
Methyl tert-butyl ether	684	60.5 μg/kg dry		681			0.440	50	
Naphthalene	64.6	60.5 μg/kg dry		40.3			46.3	50	
Toluene	BRL	60.5 μg/kg dry		33.3			. 18.5	50	
m,p-Xylene	BRL	121 µg/kg dry		52.7			30.0	50	
o-Xylene	BRL	60.5 μg/kg dry		BRL				50	
Surrogate: 2,5-Dibromotoluene (FID)	52.2	μg/kg dry	50.0		104	70-130			
Surrogate: 2,5-Dibromotoluene (PID)	48.8	μg/kg dry	50.0		97.6	70-130			
Matrix Spike (5030179-MS1)	Sou	rce: SA24708-04	Prepared	& Analyz	ed: 03-Ma	r-05			
Benzene	16.9	μg/kg dry	20.0	BRL	84.5	70-130			
Ethylbenzene	16.6	μg/kg dry	20.0	BRL	83.0	70-130			
Methyl tert-butyl ether	18.3	μg/kg dry	20.0	BRL	91.5	70-130			
Naphthalene	17.4	μg/kg dry	20.0	BRL	87.0	70-130			
Toluene	17.3	μg/kg dry	20.0	BRL	86.5	70-130			
m,p-Xylene	33.6	μg/kg dry	40.0	BRL	84.0	70-130			
o-Xylene	16.8	μg/kg dry	20.0	BRL	84.0	70-130			
2-Methylpentane	20.0	μg/kg dry	20.0	BRL	100	70-130			
n-Nonane	19.7	μg/kg dry	20.0	BRL	98,5	70-130			
n-Pentane	23.5	μg/kg dry	20.0	BRL	118	70-130			
1,2,4-Trimethylbenzone	16,9	μg/kg dry	20.0	BRL	84.5	70-130			
2,2,4-Trimethylpentane	21.0	μg/kg dry	20.0	BRL	105	70-130			
n-Butylcyclohexane	· 20.5	μg/kg dry	20.0	0.0	102	70-130			
n-Decane	22.4	μg/kg dry	20.0	0.0	112	70-130			
Surrogate: 2,5-Dibromotoluene (FID)	54.3	μg/kg dry	50.0		109	70-130			
Surrogate: 2,5-Dibromotoluene (PID)	47.7	μg/kg dry	50.0		95.4	70-130			

Analyte(s)	Result	*RDL Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch 0503019 - 5030185									
Calibration Check (0503019-CCV1)			Prepared:	03-Mar-05	Analyze	d: 04-Mar-	-05		
C9-C18 Aliphatic Hydrocarbons	0.671	mg/kg wet	0.600		112	75-125			
C19-C36 Aliphatic Hydrocarbons	0.896	mg/kg wet	0.800		112	75-125			
C11-C22 Aromatic Hydrocarbons	1.54	mg/kg wet	1.70		90.6	75-125			
Naphthalene	90.9	μg/kg wet	100		90.9	80-120			
2-Methylnaphthalene	94.7	ug/kg wet	100		94.7	80-120			
Acenaphthylene	89.2	μg/kg wet	100		89.2	80-120			
Acenaphthene	89.9	μg/kg wet	100		89.9	80-120			
Fluorene	92.8	μg/kg wet	100		92.8	80-120			
Phenanthrene	91.4	μg/kg,wet	100		91.4	80-120			
Anthracene	90.2	μg/kg wet	100		90.2	80-120			
Fluoranthene	106	μg/kg wet	100		106	80-120			
Pyrene	100	μg/kg wet	100		100	80-120			
Benzo (a) anthracene	102	μg/kg wet	100		102	80-120			
Chrysene Chrysene	105	μg/kg wet μg/kg wet	100		105	80-120			
Benzo (b) fluoranthene	86.7	μg/kg wet	100		86.7	80-120			
Benzo (k) fluoranthene	119	μg/kg wet	100		119	80-120			
Benzo (a) pyrene	101	μg/kg wet	100		101	80-120			
Indeno (1,2,3-cd) pyrene	84.5	μg/kg wet	100		84.5	80-120			
Dibenzo (a,h) anthracene	84.7	μg/kg wet	100		84.7	80-120			
Benzo (g,h,i) perylene	80.6	μg/kg wet	100		80.6	80-120			
	80.0			00.14			0.5		
Calibration Check (0503019-CCV2)				: 03-Mar-0			-05		
C9-C18 Aliphatic Hydrocarbons	0.711	mg/kg wet	0.600		118	75-125			
C19-C36 Aliphatic Hydrocarbons	0.957	mg/kg wet	0.800		120	75-125			
C11-C22 Aromatic Hydrocarbons	1.53	mg/kg wet	1.70		90.0	75-125			
Naphthalene	98.1	μg/kg wet	100		98.1	80-120			
2-Methylnaphthalene	94.8	μg/kg wet	100		94.8	80-120			
Acenaphthylene	95.1	μg/kg wet	100		95.1	80-120			
Acenaphthene	93.1	μg/kg wet	100		93.1	80-120			
Fluorene	96.6	`μg/kg wet	100		96.6	80-120			
Phenanthrene	96.9	μg/kg wet	100		96.9	80-120			
Anthracene	92.4	. μg/kg wet	100		92.4	80-120			
Fluoranthene .	109	μg/kg wet	100		109	80-120			
Pyrene	97.6	μg/kg wet	100		97.6	80-120			
Benzo (a) anthracene	89.8	μg/kg wet	100		89.8	80-120			
Chrysene	99.4	μg/kg wet	100		99.4	80-120			
Benzo (b) fluoranthene	76.7	μg∕kg wet	100		76.7	80-120			QC
Benzo (k) fluoranthene	95.2	μg/kg wet	100		95.2	80-120			
Benzo (a) pyrene	84.6	μg/kg wct	100		84.6	80-120			
Indeno (1,2,3-cd) pyrene	92.8	μg/kg wet	100		92.8	80-120			
Dibenzo (a,h) anthracene	89.0	μg/kg wet	100		89.0	80-120			
Benzo (g,h,i) perylene	98.3	μg/kg wet	100		98.3	80-120			
Batch 5030185 - SW846 3545A									
Blank (5030185-BLK1)			Prepared	03-Mar-0	5 Analyze	ed: 04-Mar	-05		
C9-C18 Aliphatic Hydrocarbons	BRL	13.4 mg/kg wet							
C19-C36 Aliphatic Hydrocarbons	BRL	13.4 mg/kg wet							-
C11-C22 Aromatic Hydrocarbons	BRL	13.4 mg/kg wet							
Unadjusted C11-C22 Aromatic Hydrocarbons	BRL	13.4 mg/kg wet							
Total Petroleum Hydrocarbons	BRL	13.4 mg/kg wet							
Unadjusted Total Petroleum Hydrocarbons	BRL	13.4 mg/kg wet							
Naphthalene	BRL	66.5 μg/kg wet							,
2-Methylnaphthalene	BRL	66.5 μg/kg wet							
Acenaphthylene	BRL	66.5 µg/kg wet							

Analyte(s)	Result	*RDL Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch 5030185 - SW846 3545A									
Blank (5030185-BLK1)			Prepared	03-Mar-0	5 Analyze	d: 04-Mar	-05		
Acenaphthene	BRL	66.5 µg/kg wet							
Fluorene	BRL	66.5 μg/kg wet							
Phenanthrene	BRL	66.5 μg/kg wet							
Anthracene	BRL	66.5 μg/kg wet							
Fluoranthene	BRL	66.5 μg/kg wet							
Pyrene	BRL	66.5 μg/kg wet							
Benzo (a) anthracene	BRL	66.5 μg/kg wet							
Chrysene	BRL	66.5 μg/kg wet							
Benzo (b) fluoranthene	BRL	66.5 μg/kg wet							
Benzo (k) fluoranthene	BRL	66.5 μg/kg wet							
Benzo (a) pyrene	BRL	66.5 µg/kg wet							
Indeno (1,2,3-cd) pyrene	BRL	66.5 μg/kg wet							
Dibenzo (a,h) anthracene	BRL	66.5 μg/kg wet							
Benzo (g,h,i) perylene	BRL	66.5 μg/kg wet							
Surrogate: 1-Chlorooctadecane	2690	μg/kg wet	3330		80.8	40-140			
Surrogate: Ortho-Terphenyl	2260	μg/kg wet	3330		67.9	40-140			
Surrogate: 2-Bromonaphthalene	613	µg/kg wet	2670		23.0	40-140			S-GC
Surrogate: 2-Fluorobiphenyl	1780	μg/kg wet	2670		66.7	40-140			5-00
LCS (5030185-BS1)	1700	PB/ NB 1100	•	03-Mar-0			-05		
C9-C18 Aliphatic Hydrocarbons	32.7	13.4 mg/kg wet	40.0	. 03-1 v1 m-0	81.8	40-140	-03		
C19-C36 Aliphatic Hydrocarbons	62.9		53.3		118	40-140			
C11-C22 Aromatic Hydrocarbons	70.7	13.4 mg/kg wet	33.3 113		62.6	40-140			
Naphthalene	2790	13.4 mg/kg wet	6670		41.8				
-		66.5 μg/kg wet				40-140			
2-Methylnaphthalene	3300	66.5 μg/kg wet	6670		49.5	40-140			
Acenaphthylene	3330	66.5 μg/kg wet	6670		49.9 53.2	40-140 40-140			
Acenaphthene Fluorene	3550 4330	66.5 μg/kg wet	6670						
Phenanthrene	4220	66.5 μg/kg wet	6670		63.3	40-140			
	4400	66.5 µg/kg wet	6670		66.0	40-140			
Anthracene .	4120	66.5 μg/kg wet	6670		61.8	40-140			
Fluoranthene	5510	66.5 μg/kg wet	6670 6670		82.6 74.4	40-140 40-140			
Pyrene Renne (a) arthresens	4960	66.5 µg/kg wet							
Benzo (a) anthracene	4990	66.5 μg/kg wet	6670		74.8	40-140			
Chrysene	5560	66.5 μg/kg wet	6670		83.4	40-140			•
Benzo (b) fluoranthene	4620	66.5 μg/kg wet	6670		69.3	40-140			
Benzo (k) fluoranthene	5090	66.5 μg/kg wet	6670		76.3	40-140			
Benzo (a) pyrene	3920	66.5 μg/kg wet	6670		58.8	40-140			
Indeno (1,2,3-cd) pyrene	3100	66.5 μg/kg wet	6670		46.5	40-140			
Dibenzo (a,h) anthracene	3250	66.5 μg/kg wet	6670		48.7	40-140			~~.
Benzo (g,h,i) perylene	2610	66.5 μg/kg wet	6670		39.1	40-140			QC-1
Naphthalene (aliphatic fraction)	0.00667	μg/kg wet	6670		0.000100	0-200			
2-Methylnaphthalene (aliphatic fraction)	0.00667	μg/kg wet	6670		0.000100	0-200			
Surrogate: 1-Chloroctadecane	3080	μg/kg wet	3330		92.5	40-140			
Surrogate: Ortho-Terphenyl	2340	μg/kg wet	3330		70.3	40-140			
Surrogate: 2-Bromonaphthalene	1190	μg/kg wet	2670		44.6	40-140			
Surrogate: 2-Fluorobiphenyl	1720	µg/kg wet	2670		64.4	40-140			
Naphthalene Breakthrough 2-Methylnaphthalene Breakthrough	0.00 0.00	· % ·				0-5 0-5			
		70	Decread	P. A - a lz -	adı 02 Ma				
Fractionation Check Standard (50301) C9-C18 Aliphatic Hydrocarbons	23.1	I3.4 mg/kg wet	40.0	& Analyz	57.8	40-140			
C19-C36 Aliphatic Hydrocarbons	47.5	13.4 mg/kg wet	53.3		89.1	40-140			
C11-C22 Aromatic Hydrocarbons	84.0	13.4 mg/kg wet	113		74.3	40-140			
Naphthalene	3590	13.4 mg/kg wet 66.5 μg/kg wet	6670		53.8	40-140			
2-Mēthylnaphthalėne	4010		6670		60.1	40-140			
z-ivieutyttiaputnaiene	4010	66.5 µg/kg wet	00/0		OV. 1	40-140			

Result	*RDI, Unite	Spike Level	Source Result	%REC	%REC	กฐร	RPD Limit	Flag
1003011	IDE OIRS	Dover		701000	Limits	10.0	DIRECT	7.148
			& Analyz					
		,						
				73.9				
1950	μg/kg wet	2670		73.0	40-140			
		Prepared	03-Mar-0	5 Analyze	d: 04-Mar	-05		
30.5	13.4 mg/kg wet	40.0		76.2	40-140	7.09	25	
56.5	13.4 mg/kg wet	53.3		106	40-140	10.7	25	
68.7	13.4 mg/kg wet	113		60.8	40-140	2.92	25	
2640	66.5 μg/kg wet	6670		39.6	40-140	5.41	30	QC-
3330	66.5 μg/kg wet	6670		49.9	40-140	0.805	30	
3380	66.5 μg/kg wet	6670		50.7	40-140	1.59	30	
3580	66.5 μg/kg wet	6670		53.7	40-140	0.935	30	
4190	66.5 µg/kg wet	6670		62.8	40-140	0.793	30	
4160	66.5 µg/kg wet	6670		62.4	40-140	5.61	30	
3970	66.5 µg/kg wet	6670		59.5	40-140	3.79	30	
5120	66.5 μg/kg wet	6670		76.8	40-140	7.28	30	
4420	66.5 µg/kg wet	66 7 0		66.3	40-140	11.5	30	
5250	66.5 µg/kg wet	6670		78.7	40-140	5.08	30	
	,	6670		68.7	40-140	19.3	30	
	66.5 μg/kg wet			67.9	40-140	2.04		
4760	66.5 μg/kg wet	6670		71.4	40-140	6.64	30	
3780					40-140	3.64		
3230	66,5 μg/kg wet			48.4	40-140	4.00		
				50.5	40-140			
0.00667				0.000100	0-200	0.00	200	
0.00667	μg/kg wet					0.00	200	
2730	μg/kg wet	3330		82.0	40-140			
2260	μg/kg wet	3330		67.9	40-140			
799	μg/kg wet	2670		29.9	40-140			S-
1740	μg/kg wet	2670		65.2	40-140	<u> </u>		
0.00	%				0-5			
	56.5 68.7 2640 3330 3380 3580 4190 4160 3970 5120 4420 5250 4580 4530 4760 3780 3230 3370 2730 0.00667 0.00667 2730 2260 799 1740	4190 66.5 μg/kg wet 4090 66.5 μg/kg wet 4530 66.5 μg/kg wet 4530 66.5 μg/kg wet 4530 66.5 μg/kg wet 4530 66.5 μg/kg wet 5610 66.5 μg/kg wet 5140 66.5 μg/kg wet 5320 66.5 μg/kg wet 5710 66.5 μg/kg wet 4740 66.5 μg/kg wet 4310 66.5 μg/kg wet 4310 66.5 μg/kg wet 4310 66.5 μg/kg wet 4300 66.5 μg/kg wet 4040 66.5 μg/kg wet 4040 66.5 μg/kg wet 2330 μg/kg wet 1950 μg/kg wet 1950 μg/kg wet 2330 μg/kg wet 2010 μg/kg wet 330.5 13.4 mg/kg wet 68.7 13.4 mg/kg wet 68.7 13.4 mg/kg wet 3380 66.5 μg/kg wet 4190 66.5 μg/kg wet 4300 66.5 μg/kg wet 4300 66.5 μg/kg wet 4300 66.5 μg/kg wet 4300 66.5 μg/kg wet 4580 66.5 μg/kg wet	Result	Result	Result	S-BS2 Prepared & Analyzed: 05-Mar-05	Result	February February

General Chemistry Parameters - Quality Control

Analyte(s)	Result	*RDL Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch 5030086 - General Preparation					-				
Duplicate (5030086-DUP1)	Sou	rce: SA24677-04	Prepared:	01-Mar-0	5 Analyze	:d: 02-Mar	-05		
% Solids	87.9	. %		89.2			1.47	20	

Notes and Definitions

QC-1 Analyte out of acceptance range.

S-GC Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.

vext2 Field extracted

VOC10 The VOC field preserved soil sample is not within the 1:1 weight to volume ratio as recommended by SW846 methods 5030 and 5035 but may be within the 1:1 volume to volume ratio.

BRL Below Reporting Limit - Analyte NOT DETECTED at or above the reporting limit

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

A plus sign (+) in the Method Reference column indicates the method is not accredited by NELAC.

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

Matrix Spike: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

Validated by: Hanibal C. Tayeh, Ph.D. Nicole Brown

Aqueous (acid-preserved) Soil or Sediment Samples received in Methanol: Covering soil/sediment Methanol/g sc L2 +/-25% Other: Cemperature Received on ice Received at 4 ± 2 °C Other: °C The following outlines the condition of all EPH samples contained within this report upon laboratory receipt. Matrix Aqueous Soil Sediment Soil Sediment Other Matrix Aqueous Soil Sediment Other Other Matrix Aqueous Soil Sediment Other Other Matrix Aqueous Soil Sediment O	Matrix	☐ Aqueous	; É	Soil		Sediment		Other		
Sample Preservative Soil or Sediment Samples not received in Methanol or air-tight container ml Methanol/g sc L2 + L-25% Other: Samples received in Methanol: Covering soil/sediment Did to covering soil/sediment Covering soil/sediment Did to covering soil/sediment	Containers	Satisfact	ory 🗆	Broken		Leaking				
Preservative Soil or Sediment Samples not received in Methanol or air-tight container Samples received in Methanol:	Comple		□ N/A	□ pH≤2		pH>2	Comm	ent		
□ not covering soil/sediment □ Samples received in air-tight container: Temperature □ Received on ice □ Received at 4 ± 2 °C □ Other: °C Were all QA/QC procedures followed as required by the VPH method? Yes No Were any significant modifications made to the VPH method as specified in section 11.3? No *see below Were all performance/acceptance standards for required QA/QC procedures achieved? Yes No Yes, if PID and FID surrogate recoveries are listed as n/a, then that sample was run via GCMS using all QC criteria specified in the method The following outlines the condition of all EPH samples contained within this report upon laboratory receipt. Matrix □ Aqueous □ Soil □ Sediment □ Other Containers □ Satisfactory □ Broken □ Leaking Aqueous Preservative □ N/A □ pH<2 □ pH>2 □ pH adjusted to <2 in lab Comment Temperature □ Received on ice □ Received at 4 ± 2 °C □ Other: °C Were all QA/QC procedures followed as required by the EPH method? Yes No Were all performance/acceptance standards for required QA/QC procedures achieved? Yes No Were all performance/acceptance standards for required QA/QC procedures achieved? Yes No Here that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material this report is, to the best of my knowledge and belief, accurate and complete. Authorized by: Hanibal C. Tayeh, Ph.D.	Preservative									ml Methanol/g soil
Temperature □ Received on ice □ Received at 4 ± 2 °C □ Other: °C Were all QA/QC procedures followed as required by the VPH method? Yes			Samples	received in	ı Metn		-			Other:
Were all QA/QC procedures followed as required by the VPH method? Yes No No No No No No No No No No No No No			□ Samples	received in	ı air-ti	ght container	:			
Were any significant modifications made to the VPH method as specified in section 11.3? No *see below Were all performance/acceptance standards for required QA/QC procedures achieved? Yes	Temperature	□ Received	on ice	Received a	at 4 ± 2	2 °C □ Oth	er:	(rC C	
Aqueous Preservative	The following or	tlines the condi	tion of all EF	H samples	conta	ined within th	nis repor	t upon lab		
Aqueous Preservative PN/A pH<2 pH>2 pH>2 pH adjusted to <2 in lab Comment Temperature Received on ice Received at 4 ± 2 °C Other: °C Were all QA/QC procedures followed as required by the EPH method? Yes No Were any significant modifications made to the EPH method as specified in Section 11.3? No Were all performance/acceptance standards for required QA/QC procedures achieved? Yes No attest that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material this report is, to the best of my knowledge and belief, accurate and complete. Authorized by: Hanibal C. Tayeh, Ph.D.									 .	
Temperature Received on ice Received at 4 ± 2 °C Other: °C Were all QA/QC procedures followed as required by the EPH method? Yes No Were any significant modifications made to the EPH method as specified in Section 11.3? No Were all performance/acceptance standards for required QA/QC procedures achieved? Yes No Intest that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material this report is, to the best of my knowledge and belief, accurate and complete. Authorized by: Hanibal C. Tayeh, Ph.D.							ted to <	in lab	Comme	
Were all QA/QC procedures followed as required by the EPH method? YesNo										
Hanibal C. Tayeh, Ph.D.	Were all perform ttest that based u	ance/acceptance	e standards for of those ind	or required ividuals im	QA/Q media	C procedures	achieve ole for o	d? Yes <u> —</u> btaining tl	No	
							A	74	2	•
							\sim			
										ector
										ector
										ector
										ector
										ector
										ector
										ector

SPECTRUM ANALYTICAL, INC.
Featuring
Handbal Trennology

CHAIN OF CUSTODY RECORD

Special Handling:
Standard TAT - 7 to 10 business day

11075 HS

Standard TAT - 7 to 10 business days 3

All TATs are subject to laboratory approval.

Min. 24-hour notification is needed for rushes.

All samples are disposed of after 60 days unless otherwise instructed.

Additional Instructions: Received By: Rece	131035113-15	101 B 1015413-1502-28 -05	G=Grab C=Composite b ld: Sample Id: Date:	SO ₄ 9= Me OH 10= Containers: Analyses: GW=Groundwater WW=Wastewater SO=Soil SL=Sludge O=Oil A=Air X7= X7= Containers: Analyses: Analyses: Analyses:	2=HCl 3=H,SO, 4=HNO, 5=NaOH 6=Ascorbic Acid RQN: Sampler(s): \frac{1}{2}	Bossi 1s 2 Sydentin St.
Date: Three: 3/1/0; 14 52				Notes		State: MA

DOMES 400

11 Almgren Drive • Agawam, Massachusetts 01001 • 413-789-9018 • Fax 413-789-4076 • www.spectrum-analytical.com

Report Date: 08-Apr-05 15:23

SPECTRUM ANALYTICAL, INC. Featuring HANTBAL TECHNOLOGY

Final Report Re-Issued Report ☐ Revised Report

Laboratory Report

REMSERV, Inc. 35 Winthrop Street Winchester, MA 01890 Attn: Tom Simmons

Vermont # VT-11393

Project: Bossi's-12 Swanton St-MA Project #: 24124-1

Laboratory ID	Client Sample ID	<u>Matrix</u>	Date Sampled	Date Received
SA26066-01	B101-MW	Ground Water	01-Apr-05 10:45	05-Apr-05 15:10
SA26066-02	B103-MW	Ground Water	01-Apr-05 12:15	05-Apr-05 15:10
SA26066-03	B104-MW	Ground Water	01-Apr-05 12:45	05-Apr-05 15:10
SA26066-04	MW-1	Ground Water	01-Apr-05 13:45	05-Apr-05 15:10
SA26066-05	MW-4	Ground Water	01-Apr-05 13:00	05-Apr-05 15:10
SA26066-06	B102B	Ground Water	01-Apr-05 14:00	05-Apr-05 15:10
SA26066-07	B102B	Ground Water	04-Apr-05 09:45	05-Apr-05 15:10

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. All applicable NELAC requirements have been met. Please note that this report contains 20 pages of analytical data plus Chain of Custody document(s).

This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Massachusetts Certification # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538/2972 New York # 11393/11840 Rhode Island # 98 USDA # S-51435

Tayeh, Ph.D. President/Laboratory Director

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method indicated. Please refer to our "Quality" webpage at www.spectrum-analytical.com for a full listing of our current certifications.

Prepared by method SW846 3510C

1

1

1

1

1

ĭ

5.56 µg/l

 $5.56 \mu g/1$

5.56 µg/l

5.56 μg/l

5.56 µg/l

5.56 µg/l

5.56 µg/I

44.5

96.3

BRL

EPH Target PAH Analytes

Naphthaiene

2-Methylnaphthalene

Acenaphthylene

Acenaphthene

Phenanthrene

Anthracene

Pyrene

Chrysene

Fluoranthene

Benzo (a) anthracene

Benzo (b) fluoranthene

Benzo (k) fluoranthene

Fluorene

91-20-3

91-57-6

208-96-8

83-32-9

86-73-7

85-01-8

120-12-7

206-44-0

129-00-0

56-55-3

218-01-9

205-99-2

207-08-9

Sample Identification B101-MW SA26066-01

Client Project # 24124-1

<u>Matrix</u> Ground Water Collection Date/Time 01-Apr-05 10:45 Received 05-Apr-05

CAS No.	Analyte(s)	Result	*RDL/Units	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analyst Flag
Extracta	able Petroleum Hydrocarl	oons							
EPH Tai	rget PAH Analytes		Prepared by me	thod SW8	46 3510C				
50-32-8	Benzo (a) pyrene	BRL	5.56 μg/l	. 1	÷MADEP 5/2004 R	06-Apr-05	08-A.pr-05	5040219	M.B
193-39-5	Indeno (1,2,3-cd) pyrene	BRL	5.56 µg/l	1	п ,	**	**	н	77
53-70-3	Dibenzo (a,h) anthracene	BRL	5.56 μg/l	1	P	R	".	" .	**
191-24-2	Benzo (g,h,i) perylene	BRL	5.56 µg/l	1	•	b	п	**	m .
Surrogate	e recoveries:								
3386-33-2	1-Chlorooctadecane	73.4	40-140 %		•	н	r:	*1	"
84-15-1	Ortho-Terphenyl	64.2	40-140 %		**	ı	n	**	н
580-13-2	2-Bromonaphthalene	68.5	40-140 %		•	u	# - ·	"	11
321-60-8	2-Fluorobiphenyl	82.4	40-140 %		H	n	**		41

<u>Sample I</u> B103-M SA26066			Client Project # 24124-1	<u>Matr</u> Ground		lection Da l-Apr-05			<u>eceived</u> -Apr-05
CAS No.	Analyte(s)	Result	*RDL/Units	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analyst Fla
	Organic Compounds								
VPH Ali	phatic/Aromatic Carbon Rang	es	Prepared by met	hod VPH					-
	C5-C8 Aliphatic Hydrocarbons		0.750 mg/l	50	+MADEP 5/2004 Rev. 1.1	06-Apr-05	07-Apr-05	5040231	KW.
	C9-C12 Aliphatic Hydrocarbons	2.56	0.250 mg/l	50	н	u	11	н	D
	C9-C10 Aromatic Hydrocarbons	8.95	0.250 _{_mg} /1	50	n	4	11	п	н
	Unadjusted C5-C8 Aliphatic Hydrocarbons	32.5	0.750 mg/l	50	Ħ	k	, H	п	*1
	Unadjusted C9-C12 Aliphatic Hydrocarbons	11.5	0.250 mg/l	50	*1	ħ	н	н	11
VPH Tai	rget Analytes		Prepared by met	hod VPH					
71-43-2	Benzene	168	50.0 µg/l	50	n	u	н	*1	*1
100-41-4	Ethylbenzene	1,790	50.0 μg/l	50	h	n	н	н	**
1634-04-4	Methyl tert-butyl ether	BRL	50.0 μg/l	50	N	**	11	м	41
91-20-3	Naphthalene	392	50.0 μg/l	50	11	н	n	**	11
108-88-3	Toluene	4,560	50.0 μg/l	50	Ħ	н	1*	11	41
1330-20-7	m,p-Xylene	6,090	100 μg/l	50	n	и .	#	17	it
95-47-6	o-Xylene	2,480	50.0 μg/l	50	н	н	н	ıı	н
Surrogate	e recoveries:								
615-59-8	2,5-Dibromotoluene (FID)	104	70-130 %			**	11	**	
615-59-8	2,5-Dibromotoluene (PID)	102	70-130 %	i	41	*	41	ш	я
Extract	able Petroleum Hydrocarbo	ns							
	iphatic/Aromatic Ranges	~~	Prepared by met	hod SW8	46 3510C				
	C9-C18 Aliphatic Hydrocarbons	2.4	0.2 mg/l	1	+MADEP 5/2004 R	06-Apr-05	08-Apr-05	5040219	M.B
	C19-C36 Aliphatic Hydrocarbons	BRL	0.2 mg/l	1	11	н	n	11	H-
	C11-C22 Aromatic Hydrocarbons	0.6	0.2 mg/l	1	н	н	н	и	н
	Unadjusted C11-C22 Aromatic Hydrocarbons	0.9	0.2 mg/l	1	н	4	11	11	н
	Total Petroleum Hydrocarbons	3.0	0.2 mg/l	1	M	**	11	**	•
	Unadjusted Total Petroleum Hydrocarbons	3 .2	0.2 mg/l	1	*		н	Ħ	19
ЕРН Та	rget PAH Analytes		Prepared by me	thod SW8	346 3510C				
91-20-3	Naphthalene	165	5.26 µg/l	1	h	11	**	•	11
91-57-6	2-Methylnaphthalene	105	5.26 μg/l	1	н	п	η	**	11
208-96-8	Acenaphthylene	BRL	5.26 μg/l	1	11	н	н	n	II .
83-32-9	Acenaphthene	BRL	5.26 μg/l	1	11	н	н	u	н
86-73-7	Fluorene	BRL	5.26 μg/l	1	11	н	н	н	п
85-01-8	Phenanthrene	BRL	5.26 μg/l	1	И	ч	*1	11	71
120-12-7	Anthracene	BRL	5.26 μg/l	1	н	н	и		п
206-44-0	Fluoranthene	BRL	5.26 μg/l	ì	n	.	n	н	н
129-00-0	Pyrene	BRL	5.26 μg/l	1	**		n	н	**
56-55-3	Benzo (a) anthracene	BRL	5.26 μg/l	1	ij	н	#I		ч
218-01-9	Chrysene	BRL	5.26 μg/l	1	н.	н	N	71	It
205-99-2	Benzo (b) fluoranthene	BRL	5.26 μg/l	1	el .	11	H	*1	*1
207-08-9	Benzo (k) fluoranthene	BRL	5.26 μg/l	1	11	Ħ	H	**	н

Sample Identification B103-MW SA26066-02

Client Project # 24124-1

<u>Matrix</u> Ground Water Collection Date/Time 01-Apr-05 12:15 Received 05-Apr-05

CAS No.	Analyte(s)	Result	*RDL/Units	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analyst	Flag
Extracta	able Petroleum Hydrocarl	oons								
EPH Tai	rget PAH Analytes		Prepared by me	thod SW8	46 3510C					-
50-32-8	Benzo (a) pyrene	BRL	5.26 μg/l	1	+MADEP 5/2004 R	06-Apr-05	08-Apr-05	5040219	MLB	
193-39-5	Indeno (1,2,3-cd) pyrene	BRL	5.26 μ g/ l	1	"	H	II .	п	_"	
53-70-3	Dibenzo (a,h) anthracene	BRL	5.26 μg/I	1	n	11	rl	۳.	٠ +	
191-24-2	Benzo (g,h,i) perylene	BRL	5.26 μg/I .	1	4	**		15	, 11	
Surrogate	e recoveries:									
3386-33-2	1-Chlorooctadecane	65.4	40-140 %		R	н	н	н	н	
84-15-1	Ortho-Terphenyl	63. I	40-140 %		"	*	н	•	н	
580-13-2	2-Bromonaphthalene	35.6	40-140 %		*1	**	H	Ti	**	S-GC
321-60-8	2-Fluorobiphenyl	83.4	40-140 %		H	r	m	þi		

CAS No.	Analyte(s)	Result	*RDL/Units	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analyst Fia
Volatile	Organic Compounds			,					
VPH Alij	ohatic/Aromatic Carbon Rang	es	Prepared by me	thod VPH					
	C5-C8 Aliphatic Hydrocarbons	8.89	0.300 mg/l	20	+MADEP 5/2004 Rev. 1.1	06-Apr-05	07-Apr-05	5040231	KW
	C9-C12 Aliphatic Hydrocarbons	1.52	0.100 mg/l	20	н	11	н	*	n
	C9-C10 Aromatic Hydrocarbons	3.75	0.100 mg/l	20	"	#1	ч	h	"
	Unadjusted C5-C8 Aliphatic Hydrocarbons	13.0	0.300 mg/l	20	п	н	D	11	r
	Unadjusted C9-C12 Aliphatic Hydrocarbons	5.27	0.100 mg/l	20	"	н	17	11	4
VPH Tai	rget Analytes		Prepared by me	thod VPH					
71-43-2	Benzene	36.8	20.0 μg/l	20	n	•	ь	11	**
100-41-4	Ethylbenzene	843	20.0 μg/l	20	**	41		**	
1634-04-4	Methyl tert-butyl ether	38.6	20.0 μg/l	20	**	"	p	Ħ	
91-20-3	Naphthalene	181	20.0 μg/l	20	11	. "	**	n	я
108-88-3	Toluene	338	20.0 μg/l	20	**	41	0	п	**
1330-20-7	m,p-Xylene	2,080	40.0 μg/l	20	"	**	"	н	41
95-47-6	o-Xylene	780	20.0 μg/l	20	II .	11	**	n	41
Surrogati	recoveries:								
615-59-8	2,5-Dibromotoluene (FID)	97.0	70-130 %		н	+	п	н	11
615-59-8	2,5-Dibromotoluene (PID)	95.2	70-130 %		n	n	**	н	*1
Extract	able Petroleum Hydrocarbo								
	phatic/Aromatic Ranges	13	Prepared by me	thad SW8	46 3510C				
EI II AII	•	0.4	-			06 4 05	00 4 05	5040010	м.в
	C9-C18 Aliphatic Hydrocarbons	0.4	0.2 mg/l	1	+MADEP 5/2004 R	00-Apr-03	08-Apr-05	3040219	M.D
	C19-C36 Aliphatic Hydrocarbons	BRL	0.2 mg/l	1			 n		,,
	C11-C22 Aromatic Hydrocarbons	0.4	0.2 mg/l	1				**	
	Unadjusted C11-C22 Aromatic Hydrocarbons		0.2 mg/l	l	,	"	н	'n	**
	Total Petroleum Hydrocarbons	0.8	0.2 mg/l	l	•	•	и.	"	
	Unadjusted Total Petroleum Hydrocarbons	1.0	0.2 mg/l	l	•	•	*	п	"
EPH Ta	rget PAH Analytes		Prepared by me	thod SW8	346 3510C				
91-20-3	Naphthalene	88.1	5.00 μg/l	1	**	**	**	н	**
91-57-6	2-Methylnaphthalene	48.3	5.00 μg/l	1	*	*	•	11	**
208-96-8	Acenaphthylene	BRL	5.00 μg/l	1		ч .	4	н	*
83-32-9	Acenaphthene	BRL	5.00 μg/l	Į.	"	47	4	н	**
86-73-7	Fluorene	BRL	5.00 μg/l	1	π	q	*	"	**
85-01-8	Phenanthrene	BRL	5.00 μg/l	1		*	•	"	11
120-12-7	Anthracene	BRL	5.00 μg/l	1	ii .	. м -	ч	*1	**
206-44-0	Fluoranthene	BRL	5.00 μg/l	1	¥	41	*	н	11
129-00-0	Pyrene	BRL	5.00 μg/l	1	**	41 ,	91	#	11
56-55-3	Benzo (a) anthracene	BRL	5.00 µg/l	1	11	11	. в	**	п
218-0)-9	Chrysene	BRL	5.00 µg/l	1	4	H ,	17	11	n
205-99-2	Benzo (b) fluoranthene	BRL	5.00 μg/l	1	R	n	"	,	"
								11	н

Sample Identification B104-MW SA26066-03

Client Project # 24124-1

<u>Matrix</u> Ground Water Collection Date/Time 01-Apr-05 12:45 Received 05-Apr-05

CAS No.	Analyte(s)	Result	*RDL/Units	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analyst	Flag
Extract	able Petroleum Hydrocarl	ons					• -			
EPH Ta	rget PAH Analvtes		Prepared by me	thod SW8	46 3510C					
50-32-8	Benzo (a) pyrene	BRL	5.00 μg/l	1	+MADEP 5/2004 R	06-Apr-05	08-Apr-05	5040219	MLB	
193-39-5	Indeno (1,2,3-cd) pyrene	BRL	5.00 µg/l	1	u	n	υ .	**		
53-70-3	Dibenzo (a,h) anthracene	BRL	5.00 μg/l	I	"	ш	ħ	"	n	
191-24-2	Benzo (g,h,i) perylene	BRL	5.00 µg/l	1	η .	n	Þ	ıı	1)	
Surrogati	e recoveries:									
3386-33-2	1-Chlorooctadecane	77.8	40-140 %		"		14	D	н	
84-15-1	Ortho-Terphenyl	66.8	40-140 %		ч	"	h	п	u	
580-13-2	2-Bromonaphthalene	59.2	40-140 %		**	11	r	17	. "	
321-60-8	2-Fluorobiphenyl	83.0	40-140 %		it	R		•	n	

CAS No.	Analyte(s)	Result	*RDL/Units	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analyst	Flag
Volatile	Organic Compounds									
VPH Ali	phatic/Aromatic Carbon Rang	<u>es</u>	Prepared by me	thod VPH						
	C5-C8 Aliphatic Hydrocarbons	0.753	0.0750 mg/l	5	+MADEP 5/2004 Rev. 1.1	06-Apr-05	06-Арт-05	5040231	KW	
	C9-C12 Aliphatic Hydrocarbons	0.159	0.0250 mg/l	5	н	**	*	"	P)	
	C9-C10 Aromatic Hydrocarbons	0.300	0.0250 mg/l	5	•	r	n	- "	•	
	Unadjusted C5-C8 Aliphatic Hydrocarbons	0.864	0.0750 mg/l	5	11	* .	"	11	В	
	Unadjusted C9-C12 Aliphatic Hydrocarbons	0.459	0.0250 mg/l	5	10	n	*1	н	н	
VPH Ta	rget Analytes		Prepared by me	thod VPH						
71-43-2	Benzene	11.4	5.0 μg/l	5	н		, .	71	11	
100-41-4	Ethylbenzene	26.8	5.0 μg/l	5		*		**	*	
1634-04-4	Methyl tert-butyl ether	BRL	5.0 μg/l	5	*	11	•	14	н	
91-20-3	Naphthalene	10.8	5.0 μg/l	5		- "	- 11	t)	r)	
108-88-3	Toluene	12.4	5.0 μg/l	5	н	н	n	"	н	
1330-20-7	m,p-Xylene	50.8	10.0 μg/l	5	н	н	"	н	11	
95-47-6	o-Xylene	9.6	5.0 μg/I	5	11	н	**		n	
Surrogati	e recoveries:									
615-59-8	2,5-Dibromotoluene (FID)	86.6	70-130 %		н	Ψ.		11	*1	
615-59-8	2,5-Dibromotoluene (PID)	86.0	70-130 %			Р	•	P	Ħ	
Frtract	able Petroleum Hydrocarboi									
	iphatic/Aromatic Ranges	13	Prepared by me	thad CW/8	46.3510C					
EFH AU		DDI		uiou swo			00 1 05	5040010	160	
	C9-C18 Aliphatic Hydrocarbons	BRL	0.2 mg/l	į.	+MADEP 5/2004 R	06-Apr-05	08-Apr-05	5040219		
	C19-C36 Aliphatic Hydrocarbons	BRL	0.2 mg/l	1	н	4	•	4	"	
	C11-C22 Aromatic Hydrocarbons	BRL	0.2 mg/l	1	•	н	**	н	"	
	Unadjusted C11-C22 Aromatic Hydrocarbons	BRL	0.2 mg/l	1	н	**	n	11	w	
	Total Petroleum Hydrocarbons	0.2	. 0.2 mg/l	1	"	н	"	н	lt.	
	Unadjusted Total Petroleum Hydrocarbons	0.2	0.2 mg/l	1	Ħ	н	**	"	"	
ЕРН Та	rget PAH Analytes		Prepared by me	thod SW8	46 3510C					
91-20-3	Naphthalene	BRL	5.00 μg/l	Į.	п		4	II .	11	
91-57-6	2-Methylnaphthalene	BRL	5.00 μg/l	1	н	n	•	н	н	
208-96-8	Acenaphthylene	BRL	5.00 μg/l	.1		н	•	"		
83-32-9	Acenaphthene	BRL	5.00 μg/l	1	*	11	n	11	**	
86-73-7	Fluorene	BRL	5.00 μg/l	1	**	11	"	ri	n	
85-01-8	Phenanthrene ,	BRL	5.00 μg/l	1	"	17		*1		
120-12-7	Anthracene	BRL	5.00 μg/l	I	*1	н	4	. *	н	
206-44-0	Fluoranthene	BRL	5.00 μg/l	1	n	Ħ	,	. н		
129-00-0	Pyrene	BRL	5.00 μg/l	1	"	•	*	**	. н	
56-55-3	Benzo (a) anthracene	BRL	5.00 μg/l	I	n	19	. "	11	14	
30-33-3					h	п	"	н	"	
218-01-9	Chrysene	BRL	5.00 μg/l	1						
	Chrysene Benzo (b) fluoranthene	BRL BRL	5.00 μg/l 5.00 μg/l	1	,	n	**	"	м	

Received

05-Apr-05

Sample Identification
MW-1
SA26066-04

Client Project # 24124-1

<u>Matrix</u> Ground Water Collection Date/Time 01-Apr-05 13:45 Received 05-Apr-05

CAS No.	Analyte(s)	Result	*RDL/Units	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analyst Fla
Extracta	able Petroleum Hydrocarl	ons							
EPH Tar	get PAH Analytes		Prepared by me	thod SW8	46 3510C				
50-32-8	Benzo (a) pyrene	BRL	5.00 μg/l	1	+MADEP 5/2004 R	06-Apr-05	08-Apr-05	5040219	M.B
193-39-5	Indeno (1,2,3-cd) pyrene	BRL	5.00 μg/l	1	M	и	ч	"	11
53-70-3	Dibenzo (a,h) anthracene	BRL	5.00 µg/l	1	*1		"	n	11
191-24-2	Benzo (g,h,i) perylene	BRL	5.00 µg/l	1	N	n	U	μ	44
Surrogate	recoveries:			_					
3386-33-2	1-Chlorooctadecane	67.2	40-140 %		*1	И	"		4
84-15-1	Ortho-Terphenyl	. 63.6	40-140 %		*	н	n	1)	H
580-13-2	2-Bromonaphthalene	71.5	40-140 %		**	•	n	D	н
321-60-8	2-Fluorobiphenyl	80.5	40-140 %		m	я	"	"	н

5.00 µg/l

5.00 µg/l

5.00 µg/l

5.00 µg/l

BRL

BRL

BRL

BRL

56-55-3

218-01-9

205-99-2

207-08-9

Benzo (a) anthracene

Benzo (b) fluoranthene

Benzo (k) fluoranthene

Chrysene

í

1

1

Sample Identification MW-4 SA26066-05

Client Project # 24124-1

<u>Matrix</u> Ground Water Collection Date/Time 01-Apr-05 13:00 Received 05-Apr-05

CAS No.	Analyte(s)	Result	*RDL/Units	Dilution	$Method\ Ref.$	Prepared	Analyzed	Batch	Analyst Flag
Extracta	able Petroleum Hydrocarl	ons							
EPH Tai	rget PAH Analytes		Prepared by me	thod SW8	46 3510C				
50-32-8	Benzo (a) pyrene	BRL	5.00 µg/l	1	+MADEP 5/2004 R	06-Apr-05	08-Арт-05	5040219	М.В
193-39-5	Indeno (1,2,3-cd) pyrene	BRL	5.00 μg/l	1	,	"	**	ır	H
53-70-3	Dibenzo (a,h) anthracene	BRL	ا∕عیر 5.00	1	**	ır	71	11	D
191-24-2	Benzo (g,h,i) perylene	BRL	5.00 µg/l	1	47	u	*1	и	I)
Surrogati	e recoveries:				1000				
3386-33-2	1-Chlorooctadecane	71.0	40-140 %		**	"	*1	**	н
84-15-1	Ortho-Terphenyl	68.0	· 40-140 %		#	n	N	11	m
580-13-2	2-Bromonaphthalene	41.2	40-140 %		г	ч	n	11	н
321-60-8	2-Fluorobiphenyl	83.8	40-140 %		н	**		ni	41

Sample Identification B102B SA26066-06

Client Project # 24124-1

<u>Matrix</u> Ground Water Collection Date/Time 01-Apr-05 14:00 Received 05-Apr-05

CAS No.	Analyte(s)	Result	*RDL/Units	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analyst Flag
Volatile	Organic Compounds								
VPH Ali	phatic/Aromatic Carbon Rang	res	Prepared by me	thod VPH					
	C5-C8 Aliphatic Hydrocarbons	4.62	0.150 mg/l	10	+MADEP 5/2004 Rev. 1.1	06-Apr-05	07-А _р г-05	5040231	KW
	C9-C12 Aliphatic Hydrocarbons	2.25	0.0500 mg/l	10	ч	, н	Р	п	u .
	C9-C10 Aromatic Hydrocarbons	6.91	0.0500 mg/l	10	п	н	T	н	71
	Unadjusted C5-C8 Aliphatic Hydrocarbons	11.7	0.150 mg/l	10	n	и	41	И	u
	Unadjusted C9-C12 Aliphatic Hydrocarbons	9.16	0.0500 mg/l	10	п	н	n	n	н
VPH Ta	rget Analytes		Prepared by me	thod VPH					
71-43-2	Benzene	230	10.0 µg/l	10	Ħ	11	14	11	п
100-41-4	Ethylbenzene	680	10.0 μg/l	10	*	11	***	"	ú
1634-04-4	Methyl tert-butyl ether	87.4	10.0 μg/l	10	•	11	P	н	н
91-20-3	Naphthalene	368	10.0 μg/l	10	ч	n	17	н .	"
108-88-3	Toluene	1,600	10.0 μg/l	10	**	n	ıı	n	н
1330-20-7	m,p-Xylene	2,560	20.0 μg/l	10	P	n	н	H	4
95-47-6	o-Xylene	1,910	10.0 μg/l	10	II .	н	H	п	H
Surrogat	e recoveries;						_		
615-59-8	2,5-Dibromotoluene (FID)	94.6	70-130 %		N	47	**	41	11
615-59-8	2,5-Dibromotoluene (PID)	92.4	70-130 %		**	н	**	**	31

CAS No.	Analyte(s)	Result	*RDL/Units	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analyst	Flag
Extracta	ible Petroleum Hydrocarboi	ıs								
EPH Ali;	phatic/Aromatic Ranges		Prepared by met	thod SW8	46 3510C					
	C9-C18 Aliphatic Hydrocarbons	0.4	0.2 mg/l	1	÷MADEP 5/2004 R	06-Apr-05	08-Apr-05	5040219	M.B	
	C19-C36 Aliphatic Hydrocarbons	BRL	0.2 mg/l	I	41	п	Ic.	н	k	
	C11-C22 Aromatic Hydrocarbons	0.5	0.2 mg/l	1	Ħ	I)	п	п		
	Unadjusted C11-C22 Aromatic Hydrocarbons	0.6	0.2 mg/l	1	11	п	"	н	BT .	
	Total Petroleum Hydrocarbons	0.9	0.2 mg/l	1	#	If	п	н	ч	
	Unadjusted Total Petroleum Hydrocarbons	1.0	0.2 mg/l	1	41	If	n	4	n	
EPH Tai	rget PAH Analytes		Prepared by met	thod SW8	46 3510C					
91-20-3	Naphthalene	114	5.00 μg/l	1	н	tı	**	n	11	
91-57-6	2-Methyinaphthalene	30.6	5.00 μg/l	1	**	n	87	n	91	
208-96-8	Acenaphthylene	BRL	5.00 μg/l	1	11	Ħ	P	н)†	
83-32-9	Acenaphthene	BRL	5.00 μg/l	1	11	ri	36	н	10	
86-73-7	Fluorene	BRL	5.00 μg/l	1	11	D	19	н	11	
85-01-8	Phenanthrene	BRL	5.00 μg/l	1	11	н	Į.	н	**	
120-12-7	Anthracene	BRL	5.00 μg/l	1	11	n	h	"	17	
206-44-0	Fluoranthene	BRL	5.00 μg/l	1	17	H	n	91	11	
129-00-0	Pyrene	BRL	5.00 μg/l	1	#	ч	n	Ħ	"	
56-55-3	Benzo (a) anthracene	BRL	5.00 μg/l	1	11	4	n	и	н	
218-01-9	Chrysene	BRL	5.00 μg/l	1	n		n	Ħ	n	
205-99-2	Benzo (b) fluoranthene	BRL	5.00 μg/l	1	n .		ч	н	*1	
207-08-9	Benzo (k) fluorantherie	BRL	5.00 μg/l	1	. н	4	н	n	4F	
50-32-8	Benzo (a) pyrene	BRL	5.00 μg/l	1	н	41	"	н	30	
193-39-5	Indeno (1,2,3-cd) pyrene	BRL	5.00 µg/l	1	H	**	ч	н	11	
53-70-3	Dibenzo (a,h) anthracene	BRL	5.00 μg/l	1	н	10	11	n	97	
191-24-2	Benzo (g,h,i) perylene	BRL	5.00 μg/I	1	n	41	**	*1	n	
Surrogate	recoveries:									
3386-33-2	1-Chlorooctadecane	67.2	40-140 %			r	н	71	η	
84-15-1	Ortho-Terphenyl .	63.2	40-140 %		¥F	п	п	Ħ	ii	
580-13-2	2-Bromonaphthalene	69.0	40-140 %		- 14	p	11	71	n	
321-60-8	2-Fluorobiphenyl	85.2	40-140 %		#f	n	п	R		

Volatile Organic Compounds - Quality Control

Analyte(s)	Result	*RDL Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch 5040231 - VPH									
Blank (5040231-BLK1)			Prepared	& Analyz	ed: 06-Api	:-05			
C5-C8 Aliphatic Hydrocarbons	BRL	0.0750 mg/l		•					
C9-C12 Aliphatic Hydrocarbons	BRL	0.0250 mg/l							
C9-C10 Aromatic Hydrocarbons	BRL	0.0250 mg/l							
Unadjusted C5-C8 Aliphatic Hydrocarbons	BRL	0.0750 mg/l							
Unadjusted C9-C12 Aliphatic Hydrocarbons	BRL	0.0250 mg/l							
Benzene	BRL	5.0 μg/l							
Ethy!benzene	BRL	5.0 μg/l							
Methyl tert-butyl ether	BRL	5.0 μg/l							
Naphthalene	BRL	5.0 μg/l							
Toluene	BRL	5.0 μg/l							
m,p-Xylene	BRL	10,0 µg/l							
o-Xylene	BRL	5.0 μg/l							
Surrogate: 2,5-Dibromotoluene (FID)	52.6	μg/l	50.0		105	70-130			
Surrogate: 2,5-Dibromotoluene (PID)	51.5	μg/l	50.0		103	70-130			
LCS (5040231-BS1)			Prepared	& Analyz	ed: 06-Ap	r-05			
C5-C8 Aliphatic Hydrocarbons	129	mg/l	140		92.1	70-130			
C9-C12 Aliphatic Hydrocarbons	53.5	mg/l	55.0		97.3	70-130			
C9-C10 Aromatic Hydrocarbons	30.9	mg/l	30.0		103	70-130			
Unadjusted C5-C8 Aliphatic Hydrocarbons	246	mg/l	280		87.9.	70-130			
Unadjusted C9-C12 Aliphatic Hydrocarbons	84.4	mg/l	85.0		99.3	70-130			
Benzene	16.8	` μg/l	20.0		84.0	70-130			
Ethylbenzene	16.2	μg/t	20.0		81.0	70-130			
Methyl tert-butyl ether	19.0	μg/t	20.0		95.0	70-130			
Naphthalene	17.0	μg/l	20.0		85.0	70-130			
Toluene	16.4	μg∕ī	20.0		82.0	70-130			
m,p-Xylene	32.2	μg/l	40.0		80.5	70-130			
o-Xylene	16.8	μgЛ	20.0		84.0	70-130			
2-Methylpentane	17.7	μg/]	20.0		88.5	70-130			
n-Nonane	15.5	μg/1	20.0		77.5	70-130			
n-Pentane	17.8	μg/]	20.0		89.0	70-130			
1,2,4-Trimethylbenzene	16.6	μg∕Л	20.0		83.0	70-130			
2,2,4-Trimethylpentane	17.7	μ g /J	20.0		88.5	70-130			
n-Butylcyclohexane	16.3	μg∕і	20.0		81.5	70-130			
n-Decane	15.2	μg/l	20.0		76.0	70-130			
Surrogate: 2,5-Dibromotoluene (FID)	37.3	μ g/ l	50.0		74.6	70-130			
Surrogate: 2,5-Dibromotoluene (PID)	37.5	μg/1	50.0		75.0	70-130			
LCS Dup (5040231-BSD1)	0710	h.B.		: 06-Apr-0		d: 07-Apr	-05		
C5-C8 Aliphatic Hydrocarbons	141	mg/!	140		101	70-130	9.22	25	
C9-C12 Aliphatic Hydrocarbons	56.0	mg/l	55.0		102	70-130	4.72	25	
C9-C12 Ariphatic Hydrocarbons C9-C10 Aromatic Hydrocarbons	35.0	mg/l	30.0		117	70-130	12.7	25	
Unadjusted C5-C8 Aliphatic Hydrocarbons	275	mg/l	280		98.2	70-130	11.1	25	
Unadjusted C9-C12 Aliphatic	91.0	mg/l	85.0		107	70-130	7.46	25	
Hydrocarbons	91,0	ILLE,	00,0		,				
Benzene	18.7	μg/l	20.0		93.5	70-130	10.7	25	
Ethylbenzene	19.1	µg/]	20.0		95.5	70-130	16.4	25	
Methyl tert-butyl ether	20.4	μg/l	20.0		102	70-130	7.11	25	
Naphthalene	21.7	μg/1	20.0		108	70-130	23.8	25	
Toluene	18.9	μ g/]	20.0		94.5	70-130	14.2	25	
m,p-Xylene	37.6	μ <u>g</u> /l	40.0		94.0	70-130	15.5	25	
o-Xylene	19.4	μg/I	20.0		97.0	70-130	14.4	25	
2-Methylpentane	18.6	μ <u>в</u> √.	20.0		93.0	70-130	4.96	25	
n-Nonane	17.9	μg/l	20.0		89.5	70-130	14.4	25	

Volatile Organic Compounds - Quality Control

			Spike	Source		%REC		RPD	
Analyte(s)	Result	*RDL Units	Leve!	Result	%REC	Limits	RPD	Limit	Flag
Batch 5040231 - VPH									
LCS Dup (5040231-BSD1)			Prepared:	06-Apr-0	5 Analyze	d: 07-Apr-	-05		
n-Pentane	18.7	μ g/ l	20.0		93.5	70-130	4.93	25	
1,2,4-Trimethylbenzene	19.9	μg/l	20.0		99.5	70-130	18.1	25	
2,2,4-Trimethylpentane	18.9	μg/l	20.0		94.5	70-130	6.56	25	
n-Butylcyclohexane	19.7	μg/Ι	20.0		98.5	70-130	18.9	25	
n-Decane	19.7	μg/l	20.0		98.5	70-130	25.8	25	QR-02
Surrogate: 2,5-Dibromotoluene (FID)	49.7	μ g ∕1	50.0		99.4	70-130			
Surrogate: 2,5-Dibromotoluene (PID)	48.5	μg/l	50.0		97.0	70-130			
Duplicate (5040231-DUP1)	Sou	rce: SA26067-04	Prepared	& Analyz	ed: 06-Api	r-05			
C5-C8 Aliphatic Hydrocarbons	BRL	0.0750 mg/l		0.00641			0.312	50	
C9-C12 Aliphatic Hydrocarbons	BRL	0.0250 mg/l		0.000272			23.4	50	
C9-C10 Aromatic Hydrocarbons	BRL	0.0250 mg/l		0.00192			3.17	50	
Unadjusted C5-C8 Aliphatic Hydrocarbons	BRL	0.0750 mg/l		0.00641			0.312	50	
Unadjusted C9-C12 Aliphatic Hydrocarbons	BRL	0.0250 mg/l		0.00219			0.456	50	
Benzene	BRL	5.0 μg/l		BRL				50	
Ethylbenzene	BRL	5.0 μg/l		BRL				50	
Methyl tert-butyl ether	BRL	5.0 µg/l		BRL				50	
Naphthalene	BRL	5.0 μ g /l		BRL				50	
Toluene	BRL	5.0 µg/l		BRL				50	
m,p-Xylene	BRL	10.0 µg/l		BRL				′ 50	
o-Xylene	BRL	5.0 μg/l		BRL				50	
Surrogate: 2,5-Dibromotoluene (FID)	44.8	μg/l	50.0		89.6	70-130			
Surrogate: 2,5-Dibromotoluene (PID)	44.3	μ g/ Ι	50.0		88.6	70-130			
Matrix Spike (5040231-MS1)	Sou	rce: SA26067-04	Prepared	& Analyz	ed: 06-Ap	r-05			
Benzene	17.9	πē\į	· 20.0	BRL	89.5	70-130			
Ethylbenzene	17.8	μ g/ 1	20.0	BRL	89.0	70-130			
Methyl tert-butyl ether	17.7	μg/l	20.0	BRL	88.5	70-130			
Naphthalene	15.3	μ g /l	20.0	BRL	76.5	70-130			
Toluene	18.0	μgЛ	20.0	BRL	90.0	70-130			
m,p-Xylene	35.2	μg/l	40.0	BRL	88.0	70-130			
o-Xylene	18.3	μg/I	20.0	BRL	91.5	70-130			
2-Methylpentane	15.1	μg/l	20.0	BRL	75.5	70-130	i		
n-Nonane	14.6	μg/l	20.0	BRL	73.0	70-130			
n-Pentane .	17.6	μg/l	20.0	BRL	88.0	70-130			
1,2,4-Trimethylbenzene	18.1	μg/l	20.0	BRL	90.5	70-130			
2,2,4-Trimethylpentane	16.3	μg/l	20.0	BRL	81.5	70-130		,	
n-Butyleyclohexane	16.2	μg/l	20.0	0.0	81.0	70-130			
n-Decane	14.8	μg/l	20.0	0.0	74.0	70-130			
Surrogate: 2,5-Dibromotoluene (FID)	29.5	μg/l	50.0		59.0	70-130			S-0
Surrogate: 2,5-Dibromotoluene (PID)	28.5	μg/l	50.0		57.0	70-130			S-0

Analyte(s)	Result	*RDL Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch 0504027 - 5040219									
Calibration Check (0504027-CCV1)			Prepared:	06-Apr-0	5 Analyze	d: 07-Apr-	05		
C9-C18 Aliphatic Hydrocarbons	0.661	mg/kg wet	0.600	*	110	75-125			
C19-C36 Aliphatic Hydrocarbons	0.760	mg/kg wet	0.800		95.0	75-125			
C11-C22 Aromatic Hydrocarbons	2.12	mg/kg wet	1.70		125	75-125			
Naphthalene	86.9	μg/kg wet	100		86.9	80-120			
2-Methylnaphthalene	85.4		100		85.4	80-120			
Acenaphthylene	88.4	μg/kg wet μg/kg wet	100		88.4	80-120			
	90.8		100		90.8	80-120			
Acenaphthene		μg/kg wet							
Fluorene	89.9	μg/kg wet	100		89.9	80-120			
Phenanthrene	94.7	μg/kg wet	100		94.7	80-120			
Anthracene	83.3	μg/kg wet	100		83.3	80-120			
Fluoranthene	107	μg/kg wet	100		107	80-120			
Pyrene	102	μg/kg wet	100		102	80-120			
Benzo (a) anthracene	129	μg/kg wet	100		129	80-120			QC-
Chrysene	108	μg/kg wet	100		108	80-120			
Benzo (b) fluoranthene	109	μg/kg wet	100		109	80-120			
Benzo (k) fluoranthene	129	μg/kg wet	100		129	80-120			QC.
Benzo (a) pyrene	114	μg/kg wet	100		114	80-120			
Indeno (1,2,3-cd) pyrene	97.0	μg/kg wet	100		97.0	80-120			
Dibenzo (a,h) anthracene	99.0	μg/kg wet	100		99.0	80-120			
Benzo (g,h,i) perylene	86.7	μg/kg wet	100		86.7	80-120			
Calibration Check (0504027-CCV2)			Prepared	: 06-Apr-0	5 Analyze	d: 07-Apr-	-05		
C9-C18 Aliphatic Hydrocarbons	0.603	mg/kg wet	0.600		100	75-125			
C19-C36 Aliphatic Hydrocarbons	0.674	mg/kg wet	0.800		84.2	75-125			
C11-C22 Aromatic Hydrocarbons	1.73	mg/kg wet	1.70		102	75-125			
Naphthalene	86.8	μg/kg wet	100		86.8	80-120			
2-Methylnaphthalene	92.9	μg/kg wet	100		92.9	80-120			
	92.9 89.4	μg/kg wet	100		89.4	80-120			
Acenaphthylene	86.8		100		86.8	80-120			
Acenaphthene		μg/kg wet							
Fluorene	88.1	μg/kg wet	100		88.1	80-120			
Phenanthrene	96.1	μg/kg wet	100		96.1	80-120			
Anthracene	90.1	μg/kg wet	100		90.1	80-120			
Fluoranthene	104	· μg/kg wet	100		104	80-120			
Pyrene	103	μg/kg wet	100		103	80-120			
Benzo (a) anthracene	123	μg/kg wet	100		123	80-120			QC
Chrysene	122	μg/kg wet	100		122	80-120			QC
Benzo (b) fluoranthene	122	μg/kg wet	100		122	80-120			QC
Benzo (k) fluoranthene	120	µg/kg wet	100		120	80-120			
Benzo (a) pyrene	122	μg/kg wet	100		122	80-120			QC
Indeno (1,2,3-cd) pyrene	100	μg/kg wet	100		100	80-120			
Dibenzo (a,h) anthracene	104	μg/kg wet	100		104	80-120			
Benzo (g,h,i) perylene	90.2	μg/kg wet	100		90.2	80-120			
Batch 5040219 - SW846 3510C									
Blank (5040219-BLK1)			Prepared	· 06_4 nr_()S Analyze	d: 07-Apr	-05		
C9-C18 Aliphatic Hydrocarbons	BRL	0.2 mg/l	Tropared	. 00-7xp1-0	75 Tillaly 2x	м. 07-11р1			
C19-C36 Aliphatic Hydrocarbons	BRL	0.2 mg/l							
C11-C22 Aromatic Hydrocarbons	BRL	0.2 mg/l							
Unadjusted C11-C22 Aromatic	BRL	0.2 mg/l			14				
Hydrocarbons		U.2 mg/l	•						
Total Petroleum Hydrocarbons	BRL	0.2 mg/l		•					
Unadjusted Total Petroleum Hydrocarbons	BRL	0.2 mg/l							
Naphthalene	BRL	2.50 µg/1							
2-Methylnaphthalene	BRL	2.50 µg/l							
Acenaphthylene	BRL	2.50 ·µg/l							

Analyte(s)	Result	*RDL Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch 5040219 - SW846 3510C									-
Blank (5040219-BLK1)			Prepared:	06-Apr-0	5 Analyze	d: 07-Apr-	05		
Acenaphthene	BRL	2.50 µg/i	1700000	00 11p1 0.					
Fluorene	BRL	2.50 μg/l							
Phonanthrene	BRL	2.50 µg/l							
Anthracene	BRL	2.50 μg/l							
Fluoranthene	BRL	2.50 µg/1							
Pyrene	BRL	2.50 µg/l							
Benzo (a) anthracene	BRL	2.50 μg/l							
Chrysenc	BRL	2.50 μg/l							
Benzo (b) fluoranthene	BRL	2.50 μg/i							
Benze (k) fluoranthene	BRL	2.50 μg/l							
Benzo (a) pyrene	BRL .	2.50 μg/l							
Indeno (1,2,3-cd) pyrene	BRL	2.50 μg/l							
Dibenzo (a,h) anthracene	BRL	2.50 μg/l							
Benzo (g,h,i) perylene	BRL	2.50 μg/l							
Surrogate: 1-Chlorooctadecane	33.7	µg∕Л	50.0		67.4	40-140			
Surrogate: Ortho-Terphenyl	30.6	μg/l	50.0		61.2	40-140			
Surrogate: 2-Bromonaphthalene	20.6	μg/l	40.0		51.5	40-140			
Surrogate: 2-Fluorobiphenyl	27.7	μg/l	40.0		69.2	40-140			
LCS (5040219-BS1)	2	<i>PG</i> 1		06-Apr-0	5 Analyze		0.5		
C9-C18 Aliphatic Hydrocarbons	0.356	0.2		00-дрг-0.			0.5		
C19-C36 Aliphatic Hydrocarbons	0.504	0.2 mg/l	0.600		59.3	40-140			
C11-C22 Aromatic Hydrocarbons	1.66	0.2 mg/l	0.800 1.70		63.0 97.6	40-140			
Naphthalene	54.2	0.2 mg/]				40-140			
2-Methýlnaphthalene	58.6	2.50 μg/l	100		54.2	40-140			
Acenaphthylene	64.8	2.50 μg/l	100		58.6	40-140			
Acenaphthene	67.0	2.50 µg/l 2.50 µg/l	100 100		64.8 67.0	40-140 40-140			
Fluorene	69.4	2.50 µg/l 2.50 µg/l	100		69.4	40-140			
Phenanthrene	75.4	2.50 μg/l	100		75.4	40-140			
Anthracene	72.0	2.50 μg/l	100		72.0	40-140			
Fluoranthene	79.7	2.50 μg/l	100		72.0	40-140			
Pyrene	-84.0	2.50 μg/l	100		84.0	40-140			
Benzo (a) anthracene	101	2.50 μg/l	100		101	40-140			
Chrysene	91.8	2.50 μg/l	100		91.8	40-140			
Benzo (b) fluoranthene	95.4	2.50 μg/l 2.50 μg/l	100		95.4	40-140			
Benzo (k) fluoranthene	102	2.50 μg/l 2.50 μg/l	100		102	40-140			
Benzo (a) pyrene	98.2	2.50 µg/l	100						
Indeno (1,2,3-cd) pyrene	` 83.5	2.50 µg/l	100		98.2	40-140			
Dibenzo (a,h) anthracene	84.9	2.50 μg/l 2.50 μg/l	100		83.5 84.9	40-140 40-140			
Benzo (g,h,i) perylene	76.7	2.50 μg/l 2.50 μg/l	100		76.7	40-140			
Naphthalene (aliphatic fraction)	0.645		100		0.645	0-200			
2-Methylnaphthalene (aliphatic fraction)	1.21	µдЛ «Л	100		1.21	0-200			
Surrogate: 1-Chlorooctadecane	35.4	μελ	50.0		70.8	40-140			
Surrogate: 0-tho-Terphenyl	35.7	µg/l	50.0		71.4	40-140			
Surrogate: 2-Bromonaphthalene	20.4	µg/l ••аЛ	40.0		51.0	40-140			
Surrogate: 2-Fluorobiphenyl	32.7	hã\[hã\[40.0		81.8	40-140			
Naphthalene Breakthrough	1.18	%	-		07.0	0-5			
Naphthalene Breakthrough 2-Methylnaphthalene Breakthrough	2.02	%				0-5 0-5			
Fractionation Check Standard (504021		70	Prepared.	06-4pr-0	5 Analyze		05		
C9-C18 Aliphatic Hydrocarbons	0.362	0.2 mg/l	0.600	00-Apr-0.	60.3	40-140	0.5		
C19-C36 Aliphatic Hydrocarbons	0.471	0.2 mg/l	0.800		58.9	40-140			
C11-C22 Aromatic Hydrocarbons	1.66	0.2 mg/l	1.70		97.6	40-140			
Naphthalene	66.8	2.50 μg/l	100		66.8	40-140			
2-Methylnaphthalene	71.1	2.50 µg/l	100		71.1	40-140			

nalyte(s)	Result	*RDL Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
atch 5040219 - SW846 3510C				,					
Fractionation Check Standard (50402	19-BS2)		Prepared:	06-Apr-0	5 Analyze	d: 07-Apr-	05		
Acenaphthylene	72.4	2.50 μg/l	100		72.4	40-140			
Acenaphthene	76.7	2.50 µg/l	100		76.7	40-140			
Fluorene	78.0	2.50 µg/l	100		78.0	40-140			
Phenanthrene	84.6	2.50 μg/l	100		84.6	40-140			
Anthracene	80.6	2.50 µg/l	100		80.6	40-140			
Fluoranthene	88.8	2.50 µg/l	100		88.8	40-140			
Pyrene	91.4	2.50 µg/l	100		91.4	40-140			
Benzo (a) anthracene	113	2.50 μg/l	100		113	40-140			
Chrysene	105	2.50 μg/l	100		105	40-140			
Benzo (b) fluoranthene	94.5	2.50 µg/J	100		94.5	40-140			
Benzo (k) fluoranthene	83.4	2.50 μg/J	100		83.4	40-140			
Benzo (a) pyrene	108	2.50 μg/l	100		108	40-140			
indeno (1,2,3-cd) pyrene	92.8	2.50 μg/l	100		92.8	40-140			
Dibenzo (a,h) anthracene	94.6	2.50 μg/l	100		94.6	40-140			
Benzo (g,h,i) perylene	84.2	2.50 μg/l	100		84.2	40-140			
Naphthalene (aliphatic fraction)	0.813	μg/l	100		0.813	0-200			
2-Methylnaphthalene (aliphatic fraction)	0.986	μ <u>g</u> /l	100		0.986	0-200			
Surrogate: 1-Chlorooctadecane	34.3	μg/l	50.0		68.6	40-140	_		
Surrogate: Ortho-Terphenyl	39.2	μ g/ l	50.0		78.4	40-140			
Surrogate: 2-Bromonaphthalene	20.8	μ <u>ε</u> /l	40.0		52.0	40-140			
Surrogate: 2-Fluorobiphenyl	34.I	μg/l	40.0		85.2	40-140			
	54.1	₩ 5 /1		· 06 Apr 0	5 Analyze		0.5		
LCS Dup (5040219-BSD1)		0.0 //		. 00-Api-0				2.5	
C9-C18 Aliphatic Hydrocarbons	0.361	0.2 mg/l	0.600		60.2	40-140	1.51	25	
C19-C36 Aliphatic Hydrocarbons	0.515	0.2 mg/l	0.800		64.4	40-140	2.20	25	
C11-C22 Aromatic Hydrocarbons	1.73	0.2 mg/l	1.70		102	40-140	4.41	25	
Naphthalene	54.2	2.50 μg/l	100		54.2	40-140	0.00	20	
2-Methylnaphthalene	59.1	2.50 μg/l	100		59.1	40-140	0.850	20	
Acenaphthylene	65.8	2.50 μg/l	100		65.8	40-140	1.53	20	
Acenaphthene	68.2	2.50 μg/l	100		68.2	40-140	1.78	20	
Fluorene	71.8	2.50 μg/l	100		71.8	40-140	3.40	20	
Phenanthrene	81.1	2.50 μg/l	100		81.1	40-140	7.28	20	
Anthracene .	75.5	2.50 μg/l	100		75.5	40-140	4.75	20	
Fluoranthene	85.9	2.50 μg/l	100		85.9	40-140	7.49	20	
Pyrene	89.6	2.50 μg/l	100		89.6	40-140	6.45	20	
Benzo (a) anthracene	108	2.50 μg/l	100		108	40-140	6.70	20	
Chrysene	105	2.50 μg/l	100		105	40-140	13.4	20	
Benzo (b) fluoranthene	98.1	2.50 μg/l	100		98.1	40-140	2.79	20	
Benzo (k) fluoranthene	116	2.50 μg/l	100		116	40-140	12.8	20	
Benzo (a) pyrene	104	2.50 μg/l	100		104	40-140	5.74	20	
Indeno (1,2,3-cd) pyrene	90.6	2.50 μg/l	100		90.6	40-140	8.16	20	
Dibenzo (a,h) anthracene	91.8	2.50 μg/i	100		91.8	40-140	7.81	20	
Benzo (g,h,i) perylene	82.7	2.50 µg/l	100		82.7	40-140	7.53	20	
Naphthalene (aliphatic fraction)	0.689	με/1	100		0.689	0-200	6.60	200	
2-Methylnaphthalene (aliphatic fraction)	0.603	μ₫/{	100		0.603	0-200	67.0	200	-
Surrogate: 1-Chlorooctadecane	36.5	μg/i	50.0		73.0	40-140			
							•		
2									,
			40.0		85.0				
Naphthalene Breakthrough	1.26					0-5			
Surrogate: Ortho-Terphenyl Surrogate: 2-Bromonaphthalene Surrogate: 2-Fluorobiphenyl Naphthalene Breakthrough 2-Methylnaphthalene Breakthrough	36.9 23.4 34.0 1.26 1.01	րջ/I բջ/I 	50.0 40.0 40.0		73.8 58.5 85.0	40-140 40-140 40-140 0-5 0-5		_	

Notes and Definitions

- QC-1 Analyte out of acceptance range.
- QR-02 The RPD result exceeded the QC control limits; however, both percent recoveries were acceptable. Sample results for the QC batch were accepted based on percent recoveries and completeness of QC data.
- S-04 The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.
- S-GC Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.
- BRL Below Reporting Limit Analyte NOT DETECTED at or above the reporting limit
- dry Sample results reported on a dry weight basis
- NR Not Reported
- RPD Relative Percent Difference

A plus sign (+) in the Method Reference column indicates the method is not accredited by NELAC.

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

Matrix Spike: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

Validated by: Hanibal C. Tayeh, Ph.D. Nicole Brown

Matrix	D Aqueous		Soil	□	Sediment	□	Other	
Containers	Satisfact	ory 🗆	Broken		Leaking			
Commis	Aqueous (acid-preserved)	□ N/A	₽pH≤2	· 🗖	pH>2	Com	ment	
Sample Preservative	Soil or	B N/A D	Samples no	t rece	ived in Meth	anol o	air-tight container	ml Methanol/g soil
	Sediment	□ Samples	received in	Meth	anol: 🗆 cov	ering	soil/sediment	☐ 1:1 +/-25% ☐ Other:
					□ not	cover	ing soil/sediment	
		□ Samples	received in	air-ti	ght container:			1
Temperature	□ Received	on ice	Received at	t 4 ± 2	2°C B Othe	r: /	°C	
The following o	utlines the condi		PH samples Soil		ined within th		ort upon laboratory r	eceipt,
Containers	Satisfacto	ry 🗆	Broken		Leaking			
Aqueous Prese	ervative N/	A ₽pH	<u><</u> 2 □ pH>	>2	□ pH adjus	ted to	<2 in lab Comme	nt
Temperature	□ Received	on ice 🗆	Received a	t 4 ± 2	2 °C 13 - Othe	T:	<i>/</i> °C	
Were any signif Were all perfort	C procedures foll leant modification mance/acceptance	ns made to t	he EPH met or required (thod a	s specified in	Section	on 11.3? No	
	the best of my l					Auth	obtaining the information or ized by: ibal C. Tayeh, Ph.D. ident/Laboratory Dis	

CHAIN OF CUSTODY RECORD

Page ___ of __/

Special Handling: 3 (polote

All TATs subject to laboratory approval Standard TAT - 7 to 10 business days

Standard TAT - Date Needed: 11 14 14 16 17

Min. 24-hour notification needed fortrushes.
Samples disposed of after 60 days utiless

otherwise instructed.	samples disposed of after oo days
	2116
	Š
	Cays

Report To: RELEMSIERV, Teas	Invoice To: 54 m.	Project No.: 24124-1	ted.
MAA	(MB) INCHOSTA (M)	2 Surgaritan	State:yd_A
Project Mgr.: The way 5 im no cus	P.O. No.: RQN:	44	
I=Na ₂ S2O ₃ 2=HCl 3=H ₂ SO ₄ 4=HNO ₃ 5=NaOH 6= 7=CH ₃ OH 8=-NaHSO ₄ 9=10=	6=Ascorbic Acid Containers:	Analyses:	QA Reporting Notes: (check if needed)
DW=Drinking Water GW=Groundwater WW=Wastewater O=Oil SW=Surface Water SO=Soil SL=Sludge A=Air X1= X2= X3=	e Vials Glass	Stat H	State specific reporting standards If applicable, please list below.
b C=Composite	rvativ OA V mber lear (☐ Provide MCP CAM Report Were all field OC requirements me
Lab Id: Sample Id: Date: Time:	Type Matrix Prese # of V # of A # of C	Eř	as per MADEP CAM Sociion 2.0? Yes No Response required for CAM report
(1) B101-MW 411105 10175	215 6 6W 2 2 1	7 7	
<u> </u>	0 Cm 2	7	
11/11		7	
1 00 NIM HIM 1:00	0000	5	
1 - C) BIORB 4/1/105 2:00	12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
口子ax results when available to (フなし)つるレーリリる	Relinquished by:	Received by:	Date: Time:
□ B-mail to	1 Jan - sa	isal partas 4/5	103 1045
EDI) Format	Cotto Chira	Nam Philley 1/19	4/5/05 15/0
Condition upon receipt: 🗖 Iced 🗖 Ambient 🗐 °C		4	

Groundwater Analytical, Inc. P.O. Box 1200 228 Main Street Buzzards Bay, MA 02532

Telephone (508) 759-4441 FAX (508) 759-4475

November 8, 2000

Mr. Steve Rumba WEB Engineering 106 Longwater Drive Norwell, MA 02061

Project:

Bossi's/00-E-033

Lab ID:

36958

Sampled:

10-24-00

Dear Steve:

Enclosed are the Extractable Petroleum Hydrocarbons, Volatile Petroleum Hydrocarbons, and Semivolatile Organics Analyses performed for the above referenced project. This project was processed for Standard Two Week turnaround.

This letter authorizes the release of the analytical results, and should be considered a part of this report. This report contains a project narrative indicating project changes and non-conformances, a brief description of the Quality Assurance/Quality Control procedures employed by our laboratory, and a statement of our state certifications.

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Should you have any questions concerning this report, please do not hesitate to contact me.

Sincerely,

Jonathan R. Sanford

President

JRS/pmb Enclosures

Massachusetts DEP EPH Method Extractable Petroleum Hydrocarbons by GC/FID

Field ID:	MW-1	Laboratory ID: .	36958-01
Project:	Bossi's/00-E-033	QC Batch ID:	EP-0754-F
Client:	WEB Engineering	Sampled:	10-24-00
Container:	1 L Amber Glass	· Received:	10-25-00
Preservation:	H2SO4 / Cool	Extracted:	11-01-00
Matrix:	Aqueous	Analyzed:	11-07-00

Dilution Factor: Aliphatic: 1 Aromatic: 1

n_C9 to n_C18 A	liphatic Hydrocarbons ⁷	Songentration BRL		E 6 0
		BKL	ug/L	560
	Aliphatic Hydrocarbons ¹	BRL	ug/L	560
n-C11 to n-C22	Aromatic Hydrocarbons **	BRL	ug/L	200
Unadjusted n-C11	to n-C22 Aromatic Hydrocarbons [†]	BRL	ug/L	200
	Surrogate Compounds -	Recovery	OC:	imits
Fractionation:	2-Fluorobiphenyl	77 %	40 - 1	40 %
	2-Bromonaphthalene	79 %	40 - 1	140 %
Extraction:	Chloro-octadecane	70 %	40 - 1	40 %
	ortho-Terphenyl	71 %	40 - 1	140 %

OA/QC Certification	
Were all QA/QC procedures required by the method followed?	Yes
2. Were all performance/acceptance standards for the required QA/QC procedures achieved?	Yes
3. Were any significant modifications made to the method, as specified in Section 11.3?	No ·
Method non-conformances indicated above are detailed below on this data report, or in the accompanying and project quality control report. Release of this data is authorized by the accompanying signed project or	

The accompanying cover letter, project narrative and quality control report are considered part of this data report.

Method Reference: Method for the Determination of Extractable Petroleum Hydrocarbons, MA DEP (1998). Extraction performed

utilizing separatory funnel technique.

- BRL Indicates concentration, if any, is below reporting limit for analyte. Reporting limit is the lowest concentration that can be reliably quantified under routine laboratory operating conditions. Reporting limits are adjusted for sample dilution and sample size.
- Hydrocarbon range data excludes concentrations of any surrogate(s) and/or internal standards eluting in that range.
- ♦ n-C11 to n-C22 Aromatic Hydrocarbons range data excludes the method target analyte concentrations.

Massachusetts DEP EPH Method Extractable Petroleum Hydrocarbons by GC/FID

Field ID: MW-3 Laboratory ID: 36958-02 Project: Bossi's/00-E-033 QC Batch ID: EP-0754-F Client: WEB Engineering Sampled: 10-24-00 Container: 1 L Amber Glass Received: 10-25-00 Preservation: H2SO4 / Cool Extracted: 11-01-00 Matrix: Analyzed: Aqueous 11-07-00

Dilution Factor: Aliphatic: 1 Aromatic: 1

IPA Ranges	Gongentration	TO Wals	keponingaamii
n-C9 to n-C18 Aliphatic Hydrocarbons T	1,500	ug/L	630
n-C19 to n-C36 Aliphatic Hydrocarbons	BRL	ug/L	630
n-C11 to n-C22 Aromatic Hydrocarbons T0	630	ug/L	250
Unadjusted n-C11 to n-C22 Aromatic Hydrocarbons †	1,100	ug/L	250

QC	Simrogate Compounds	Recovery	GC Emits
Fractionation:	2-Fluorobiphenyl	65 %	40 - 140 %
	2-Bromonaphthalene	65 %	40 - 140 %
Extraction:	Chloro-octadecane	47 %	40 - 140 %
	ortho-Terphenyl	67 %	40 - 140 %

OA/QC Certification 1. Were all QA/QC procedures required by the method followed? Yes

Were all performance/acceptance standards for the required QA/QC procedures achieved?

Yes

3. Were any significant modifications made to the method, as specified in Section 11.3?

No

Method non-conformances indicated above are detailed below on this data report, or in the accompanying project narrative and project quality control report. Release of this data is authorized by the accompanying signed project cover letter. The accompanying cover letter, project narrative and quality control report are considered part of this data report.

Method Reference

Method for the Determination of Extractable Petroleum Hydrocarbons, MA DEP (1998). Extraction performed utilizing separatory funnel technique.

- BRL Indicates concentration, if any, is below reporting limit for analyte. Reporting limit is the lowest concentration that can be reliably quantified under routine laboratory operating conditions.

 Reporting limits are adjusted for sample dilution and sample size.
- Hydrocarbon range data excludes concentrations of any surrogate(s) and/or internal standards eluting in that range.
- 0 n-C11 to n-C22 Aromatic Hydrocarbons range data excludes the method target analyte concentrations.

Massachusetts DEP EPH Method Extractable Petroleum Hydrocarbons by GC/FID

Field ID: MW-4 Laboratory ID: 36958-03 Project: Bossi's/00-E-033 QC Batch ID: EP-0754-F Client: WEB Engineering Sampled: 10-24-00 Container: 1 L Amber Glass Received: 10-25-00 Preservation: H2SO4 / Cool Extracted: 11-01-00 Matrix: Aqueous Analyzed: 11-07-00

Dilution Factor: Aliphatic: 1 Aromatic: 1

EPHIRanges	©neentration	L Units .I	Reporting/Limit
n-C9 to n-C18 Aliphatic Hydrocarbons [†]	1,300	ug/L	1,100
n-C19 to n-C36 Aliphatic Hydrocarbons [†]	BRL	. ug/L	1,100
n-C11 to n-C22 Aromatic Hydrocarbons **	800	ug/L	440
Unadiusted n-C11 to n-C22 Aromatic Hydrocarbons †	1,400	ug/L	440

OG Sunrogate Gompounds Recovery Recovery QC lamits					
Fractionation:	2-Fluorobiphenyl	71 %	40 - 140 %		
	2-Bromonaphthalene	74 %	40 - 140 %		
Extraction:	Chloro-octadecane ·	61 %	40 - 140 % .		
	ortho-Terphenyl	66 %	40 - 140 %		

Shall with the	Control of the second s	My Markey Control of the Control of	" 19" 19 . T. T. T. T. T. T.	NEW THE PARTY AND A WAY	Carl C. W. C. C. Bellet, M. M.
L. Carlotte and the second second	and the second s		A	A	100 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0
the state of the s	National Police and Die	THANKS CALABITICATION	2 Car 1 4 11		The plan was the state of
Control of the second s	1001	and the second s	the same of the sa	attended to the same	20 0 000

Were all QA/QC procedures required by the method followed?

Yes

2. Were all performance/acceptance standards for the required QA/QC procedures achieved?
3. Were any significant modifications made to the method, as specified in Section 11.3?

Yes

Method non-conformances indicated above are detailed below on this data report, or in the accompanying project narrative and project quality control report. Release of this data is authorized by the accompanying signed project cover letter. The accompanying cover letter, project narrative and quality control report are considered part of this data report.

Method Reference:

Method for the Determination of Extractable Petroleum Hydrocarbons, MA DEP (1998). Extraction performed utilizing separatory funnel technique.

Report Notations:

2 87

- BRL. Indicates concentration, if any, is below reporting limit for analyte. Reporting limit is the lowest concentration that can be reliably quantified under routine laboratory operating conditions. Reporting limits are adjusted for sample dilution and sample size.
- † Hydrocarbon range data excludes concentrations of any surrogate(s) and/or internal standards eluting in that range.
- n-C11 to n-C22 Aromatic Hydrocarbons range data excludes the method target analyte concentrations.

'Massachusetts DEP VPH Method Volatile Petroleum Hydrocarbons by GC/PID/FID

Field ID:

MW-1

Laboratory 1D:

36958-04

Project:

Bossi's/00-E-033 WEB Engineering QC Batch 1D: Sampled:

VG3-1291-W 10-24-00

Client: Container: Preservation:

40 mL Glass Vial HCI / Cool

Received: Analyzed: 10-25-00 10-28-00

Matrix:

Aqueous

Dilution Factor:

VPH Ranges	Concentration	· Vinits 1	ReportingUmi
n-C5 to n-C8 Aliphatic Hydrocarbons **	1,400	ug/L	- 20
n-C9 to n-C12 Aliphatic Hydrocarbons **	340	ug/L	20
n-C9 to n-C10 Aromatic Hydrocarbons	440	ug/L	20
<u>Unadjusted</u> n-C5 to n-C8 Aliphatic Hydrocarbons [†]	1,500	ug/L	20
<u>Unadjusted</u> n-C9 to n-C12 Aliphatic Hydrocarbons [†]	960	ug/L	. 20

CAS Number	- Manget Analytes	Concentration	. Units	ReportingLimit
1634-04-4	Methyl tert-butyl Ether "	16	ug/L	.5
71-43-2	Benzene "	11	ug/L	1 .
108-88-3	Toluene *	40	ug/L	5
100-41-4	Ethylbenzene †	37	ug/L	5
108-38-3 and	meta- Xylene and para-	110	ug/L	5
106-42-3	Xylene [‡]			
95-47-6	ortho- Xylene *	28	ug/L	5 .
91-20-3	Naphthalene	BRL	ug/L	5

	QC Surrogate Compounds	a Recovery	@@llimitsl
	2,5-Dibromotoluene (PID)	90 %	70 - 130 %
•	2,5-Dibromotoluene (FID)	76 %	70 - 130 %

© QA'OC Certification

Were all QA/QC procedures required by the method followed?

Yes

2. Were all performance/acceptance standards for the required QA/QC procedures achieved?

Yes

3. Were any significant modifications made to the method, as specified in Section 11.3.2.1?

Nο

Method non-conformances indicated above are detailed below on this data report, or in the accompanying project narrative and project quality control report. Release of this data is authorized by the accompanying signed project cover letter. The accompanying cover letter, project narrative and quality control report are considered part of this data report.

Method Reference:

Method for the Determination of Volatile Petroleum Hydrocarbons, MA DEP (1998).

- BRI. Indicates concentration, if any, is below reporting limit for analyte. Reporting limit is the lowest concentration that can be reliably quantified under routine laboratory operating conditions. Reporting limits are adjusted for sample dilution and sample size.
- Hydrocarbon range data excludes concentrations of any surrogate(s) and/or internal standards eluting in that range.
- n-C5 to n-C8 Aliphatic Hydrocarbons range data excludes the method target analyte concentrations.
- n-C9 to n-C12 Aliphatic Hydrocarbons range data excludes the method target analyte concentrations and the concentration for the n-C9 to n-C10 Aromatic Hydrocarbons range.
- Analyte elutes in the n-C5 to n-C8 Aliphatic Hydrocarbons range.
- Analyte elutes in the n-C9 to n-C12 Aliphatic Hydrocarbons range.

Massachusetts DEP VPH Method Volatile Petroleum Hydrocarbons by GC/PID/FID

Laboratory ID:

QC Batch ID:

Sampled:

Received:

Analyzed:

36958-05

10-24-00

10-25-00

10-27-00

VG3-1291-W

Yes

Yes

No

Field ID: MW-3

Project: Bossi's/00-E-033

Client: WEB Engineering

Container: 40 mL Glass Vial

Preservation: HCI / Cool

Matrix: Aqueous Dilution Factor: 50

VPH Ranges	Concentration)	Units 1	Reportingsumit
n-C5 to n-C8 Aliphatic Hydrocarbons 10	30,000	ug/L	1,000
n-C9 to n-C12 Aliphatic Hydrocarbons **	21,000	ug/L	1,000
n-C9 to n-C10 Aromatic Hydrocarbons †	17,000	ug/L	1,000
Unadjusted n-C5 to n-C8 Aliphatic Hydrocarbons †	55,000	ug/L	1,000
Unadjusted n-C9 to n-C12 Aliphatic Hydrocarbons †	67,000	ug/L	1,000

GAS Number	Tanget Analytes	Concentration	1. Units	Reporting Umit
1634-04-4	Methyl tert-butyl Ether "	BRL	ug/L	250
71-43-2	Benzene "	1,900	ug/L	50
108-88-3	Toluene "	23,000	ug/L	250
100-41-4	Ethylbenzene *	4,500	ug/L	250
108-38-3 and	meta- Xylene and para-	17,000	· ug/L	250
106-42-3	Xylene [‡]			
95-47-6	ortho- Xylene *	7,200	ug/L	250
91-20-3	Naphthalene	830	ug/L	250

OC Surrogate Compounds : Recovery : Recovery : OC Limits A : 1				
2,5-Dibromotoluene (PID)	98 %	70 - 130 %		
2,5-Dibromotoluene (FID)	94 %	70 - 130 %		

@A@CGentification :

- Were all QA/QC procedures required by the method followed?
- 2. Were all performance/acceptance standards for the required QA/QC procedures achieved?
- 3. Were any significant modifications made to the method, as specified in Section 11.3.2.1?

Method non-conformances indicated above are detailed below on this data report, or in the accompanying project narrative and project quality control report. Release of this data is authorized by the accompanying signed project cover letter. The accompanying cover letter, project narrative and quality control report are considered part of this data report.

Method Reference: Method for the Determination of Volatile Petroleum Hydrocarbons, MA DEP (1998).

- BRL Indicates concentration, if any, is below reporting limit for analyte. Reporting limit is the lowest concentration that can be reliably quantified under routine laboratory operating conditions. Reporting limits are adjusted for sample dilution and sample size.
- † Hydrocarbon range data excludes concentrations of any surrogate(s) and/or internal standards eluting in that range.
- n-C5 to n-C8 Aliphatic Hydrocarbons range data excludes the method target analyte concentrations.
- n-C9 to n-C12 Aliphatic Hydrocarbons range data excludes the method target analyte concentrations and
 the concentration for the n-C9 to n-C10 Aromatic Hydrocarbons range.
- Analyte elutes in the n-C5 to n-C8 Aliphatic Hydrocarbons range.
- 4 Analyte elutes in the n-C9 to n-C12 Aliphatic Hydrocarbons range.

Massachusetts DEP VPH Method Volatile Petroleum Hydrocarbons by GC/PID/FID

Field ID: Project: MW-4

Laboratory ID: QC Batch ID: 36958-06 VG3-1291-W

Client: Container: Bossi's/00-E-033 WEB Engineering 40 mL Glass Vial

Sampled: Received: 10-24**-**00 10-25**-**00

Preservation: Matrix: HCl / Cool Aqueous

Analyzed: Dilution Factor:

10-27-00 100

WPH Ranges	Concentration	្វាប់ការវិទ	Reporting Cimit
n-C5 to n-C8 Aliphatic Hydrocarbons TV	47,000	ug/L	2,000
n-C9 to n-C12 Aliphatic Hydrocarbons TS	. 29,000	ug/i_	2,000
n-C9 to n-C10 Aromatic Hydrocarbons [†]	18,000	ug/L	2,000
Unadiusted n-C5 to n-C8 Aliphatic Hydrocarbons †	94,000	ug/L	2,000
Unadjusted n-C9 to n-C12 Aliphatic Hydrocarbons	89,000	ug/L	2,000

CAS Number	Target Analytes	Concentration:	Cails,	ReportingAlimit
1634-04-4	Methyl tert-butyl Ether	3,500	ug/L	500
71-43-2	Benzene "	1,900	ug/L	100
108-88-3	Toluene "	41,000	ug/L	500
100-41-4	Ethylbenzene *	6,200	ug/L	500
108-38-3 and	meta- Xylene and para-	25,000	ug/L	500
106-42-3	Xylene *			
95-47-6	ortho- Xylene †	12,000	ug/L	500
91-20-3	Naphthalene	1,100	ug/L	500

QG Surrogate Compounds	Recovery	Condition of the Condit
2,5-Dibromotoluene (PID)	97 %	70 - 130 %
2,5-Dibromotoluene (FID)	93 %	70 - 130 %

ONOGCERtification 4.45

1. Were all QA/QC procedures required by the method followed?

Yes Yes

Were all performance/acceptance standards for the required QA/QC procedures achieved?
 Were any significant modifications made to the method, as specified in Section 11.3.2.1?

No

Method non-conformances indicated above are detailed below on this data report, or in the accompanying project narrative and project quality control report. Release of this data is authorized by the accompanying signed project cover letter. The accompanying cover letter, project narrative and quality control report are considered part of this data report.

Method Reference:

Method for the Determination of Volatile Petroleum Hydrocarbons, MA DEP (1998).

- BRL Indicates concentration, if any, is below reporting limit for analyte. Reporting limit is the lowest concentration that can be reliably quantified under routine laboratory operating conditions. Reporting limits are adjusted for sample dilution and sample size.
- † Hydrocarbon range data excludes concentrations of any surrogate(s) and/or internal standards eluting in that range.
- n-C5 to n-C8 Aliphatic Hydrocarbons range data excludes the method target analyte concentrations.
- n-C9 to n-C12 Aliphatic Hydrocarbons range data excludes the method target analyte concentrations and the concentration for the n-C9 to n-C10 Aromatic Hydrocarbons range.
- Analyte elutes in the n-C5 to n-C8 Aliphatic Hydrocarbons range.
- # Analyte elutes in the n-C9 to n-C12 Aliphatic Hydrocarbons range.

EPA Method 8270C (Modified) MA DEP EPH Polynuclear Aromatic Hydrocarbons by GC/MS-SIM

Field ID: MW-1 Laboratory ID: 36958-01 Bossi's/00-E-033 QC Batch ID: Project: EP-0754-F Sampled: Client: WEB Engineering 10-24-00 1L Amber Glass Preserved: 10-25-00 Container: Preservation: H2SO4 / Cool Received: 10-25-00 Matrix: Aqueous Extracted: 11-01-00 Analyzed: 11-03-00

Dilution Factor:

CAS Number	Analyte	Concentration.) Wints	Reporting Limit
91-20-3	Naphthalene	2.3	ug/L	0.5
91-57-6	2-Methylnaphthalene	1.4	ug/L	0.5
208-96-8	Acenaphthylene	BRL	ug/L	0.5
83-32-9	Acenaphthene	BRL	ug/l	0.5
86-73-7	Fluorene	BRL	ug/L	0.5
85-01-8	Phenanthrene	BRL	ug/L	0.5
120-12-7	Anthracene	BRL	ug/L	0.5
206-44-0	Fluoranthene	BRL	ug/L	0.5
129-00-0	Pyrene	BRL	ug/L	0.5
56-55-3	Benzo[a]anthracene	BRL	ug/L	0.1
218-01-9	Chrysene -	BRL	ug/L	0.1
205-99-2	Benzo[b]fluoranthene	BRL	ug/L	0.1
207-08-9	Benzo[k]fluoranthene	BRL	ug/L	0.1
50-32-8	Benzo[a]pyrene	BRL	ug/L	0.1
193-39-5	Indeno[1,2,3-c,d]pyrene	BRL	ug/L	0.1
53-70-3	Dibenzo[a,h]anthracene	BRL	ug/L	0.1
191-24-2	Benzo[g,h,i]perylene	BRL	ug/L	0.1

@@Sunrogate Compound	Recovery 2	QC24mits 2
ortho-Terphenyl	76 %	40 - 140 %

Method Reference:

Test Methods for Evaluating Solid Waste, US EPA, SW-846, Third Edition, Update III (1996). Analyte list as specified by the target analytes of the MA DEP Method for the Determination of Extractable Petroleum Hydrocarbons. Method modified by use of selected ion monitoring (SIM) in accordance with Section 7.5.5 of the method. Method protocol modified to include acidification and the surrogate compound in accordance with the MA DEP Method for the Determination of Extractable Petroleum Hydrocarbons.

Report Notations:

Indicates concentration, if any, is below reporting limit for analyte. Reporting limit is the lowest concentration that can be reliably quantified under routine laboratory operating conditions. Reporting limits are adjusted for sample dilution and sample size.

EPA Method 8270C (Modified) MA DEP EPH Polynuclear Aromatic Hydrocarbons by GC/MS-SIM

Field ID: Project: MW-3

Bossi's/00-E-033

H2SO4 / Cool

Client: Container: WEB Engineering
1L Amber Glass

Preservation: Matrix:

Aqueous

Laboratory ID:

36958-02

QC Batch ID: Sampled: EP-0754-F 10-24-00

Preserved:

10-25-00

Received: Extracted: 10-25-00 11-01-00

Analyzed:

11**-**03-00

Dilution Factor: 1

CAS Number	Analyte	Concentration .	3-Wmits	Reportingslami
91-20-3	Naphthalene	170 ee	ug/L	13
91-57-6	2-Methylnaphthalene	140 ee	ug/L	13
208-96-8	Acenaphthylene	BRL	ug/L	0.6
83-32-9	Acenaphthene	BRL	ug/L	0.6
86-73-7	Fluorene	1.1	ug/L	0.6
85-01-8	Phenanthrene	1.4	ug/L	0.6
120-12-7	Anthracene	BRL :	ug/L	0.6
206-44-0	Fluoranthene	BRL	ug/L	0.6
129-00-0	Pyrene	BRL	ug/L	0.6
56-55-3	Benzo[a]anthracene	0.1	ug/L	0.1
218-01-9	Chrysene ·	BRL	ug/L	0.1
205-99-2	Benzo[b]fluoranthene	BRL	ug/L	0.1
207-08-9	Benzo[k]fluoranthene	BRL	ug/L	0.1
50-32-8	Benzo[a]pyrene	BRL	ug/L	0.1
193-39-5	Indeno[1,2,3-c,d]pyrene	BRL	ug/L	0.1
53-70-3	Dibenzo[a,h]anthracene	BRL	ug/L	0.1
191-24-2	Benzo[g,h,i]perylene	BRL	ug/L	0.1

OC Surrogate Gompound	Recovery	Colimits V.
ortho-Terphenyl	72 %	40 - 140 %

Method Reference:

Test Methods for Evaluating Solid Waste, US EPA, SW-846, Third Edition, Update III (1996). Analyte list as specified by the target analytes of the MA DEP Method for the Determination of Extractable Petroleum Hydrocarbons. Method modified by use of selected ion monitoring (SIM) in accordance with Section 7.5.5 of the method. Method protocol modified to include acidification and the surrogate compound in accordance with the MA DEP Method for the Determination of Extractable Petroleum Hydrocarbons.

Report Notations:

BRI. Indicates concentration, if any, is below reporting limit for analyte. Reporting limit is the lowest concentration that can be reliably quantified under routine laboratory operating conditions. Reporting limits are adjusted for sample dilution and sample size.

ee Analyte response exceeded calibration range. Analyte result was quantified on the basis of a separate analytical run with the mass spectrometer operating in the full scan mode.

EPA Method 8270C (Modified) MA DEP EPH Polynuclear Aromatic Hydrocarbons by GC/MS-SIM

Field ID:

MW-4

Project: Client: Bossi's/00-E-033 WEB Engineering 1L Amber Glass

Container: Preservation: Matrix:

n: H₂SO₄ / Cool Agueous Laboratory ID:

36958-03 EP**-**0754-F

QC Batch ID: Sampled:

10-24-00

Preserved: Received: 10-25-00 10-25-00

Extracted: Analyzed: 11-01-00 11-03-00

Dilution Factor:

CAS Numbe	analyte	Concentration		Units	Reporting
91-20-3	Naphthalene	280	ee	ug/L	22
91-57-6	2-Methylnaphthalene	170	ee	ug/L	22
208-96-8	Acenaphthylene	BRL		ug/L	1.1
83-32-9	Acenaphthene	BRL		ug/L	1.1
86-73-7	Fluorene	1.3		ug/Ļ	1.1
85-01-8	Phenanthrene	1.7		ug/L	1.1.
120-12-7	Anthracene	BRL		ug/L	1.1
206-44-0	Fluoranthene .	BRL		ug/L	1.1
129-00-0	Pyrene	BRL		ug/L	0.2
56-55-3	Benzo[a]anthracene	BRL		ug/L	0.2
218-01-9	Chrysene	BRL		ug/L	0.2
205-99-2	Benzo[b]fluoranthene	BRL		ug/L	0.2
207-08-9	Benzo[k]fluoranthene	BRL		ug/L	0.2
50-32-8	Benzo[a]pyrene	BRL		ug/L	0.2
193-39-5	indeno[1,2,3-c,d]pyrene	BRL		ug/L	0.2
53-70-3	Dibenzo[a,h]anthracene	BRL		ug/L	0.2
191-24-2	Benzo[g,h,i]perylene	BRL		ug/L	0.2

/QC Surfiggate Gompound	Regovery -	CE LIMITE VIEW
ortho-Terphenyl	73 %	40 - 140 %

Method Reference:

Test Methods for Evaluating Solid Waste, US EPA, SW-846, Third Edition, Update III (1996). Analyte list as specified by the target analytes of the MA DEP Method for the Determination of Extractable Petroleum Hydrocarbons. Method modified by use of selected ion monitoring (SIM) in accordance with Section 7.5.5 of the method. Method protocol modified to include acidification and the surrogate compound in accordance with the MA DEP Method for the Determination of Extractable Petroleum Hydrocarbons.

Report Notations:

BRL Indicates concentration, if any, is below reporting limit for analyte. Reporting limit is the lowest concentration that can be reliably quantified under routine laboratory operating conditions. Reporting limits are adjusted for sample dilution and sample size.

ee Analyte response exceeded calibration range. Analyte result was quantified on the basis of a separate analytical run with the mass spectrometer operating in the full scan mode.

Project Narrative

Project:

Bossi's/00-E-033

Lab ID:

36958

Client:

WEB Engineering

Received:

10-25-00

This project was received by the laboratory in satisfactory condition. The sample(s) were received undamaged in appropriate containers with the correct preservation.

B. Project Documentation

This project was accompanied by satisfactory Chain of Custody documentation. The sample container label(s) agreed with the Chain of Custody.

No analytical anomalies or non-conformances were noted by the laboratory during the processing of these sample(s). All data contained within this report are released without qualification.

Quality Assurance/Quality Control

Program Overviev

Groundwater Analytical conducts an active Quality Assurance program to ensure the production of high quality, valid data. This program closely follows the guidance provided by *Interim Guidelines and Specifications for Preparing Quality Assurance Project Plans*, US EPA QAMS-005/80 (1980), and *Test Methods for Evaluating Solid Waste*, US EPA, SW-846, Update III (1996).

Quality Control protocols include written Standard Operating Procedures (SOPs) developed for each analytical method. SOPs are derived from US EPA methodologies and other established references. Standards are prepared from commercially obtained reference materials of certified purity, and documented for traceability.

Quality Assessment protocols for most organic analyses include a minimum of one laboratory control sample, one method blank, one matrix spike sample, and one sample duplicate for each sample preparation batch. All samples, standards, blanks, laboratory control samples, matrix spikes and sample duplicates are spiked with internal standards and surrogate compounds. All instrument sequences begin with an initial calibration verification standard and a blank; and excepting GC/MS sequences, all sequences close with a continuing calibration standard. GC/MS systems are tuned to appropriate ion abundance criteria daily, or for each 12 hour operating period, whichever is more frequent.

Quality Assessment protocols for most inorganic analyses include a minimum of one laboratory control sample, one method blank, one matrix spike sample, and one sample duplicate for each sample preparation batch. Standard curves are derived from one reagent blank and four concentration levels. Curve validity is verified by standard recoveries within plus or minus ten percent of the curve.

Residefinition

Batches are used as the basic unit for Quality Assessment. A Batch is defined as twenty or fewer samples of the same matrix which are prepared together for the same analysis, using the same lots of reagents and the same techniques or manipulations, all within the same continuum of time, up to but not exceeding 24 hours.

Laboratory Control Samples are used to assess the accuracy of the analytical method. A Laboratory Control Sample consists of reagent water or sodium sulfate spiked with a group of target analytes representative of the method analytes. Accuracy is defined as the degree of agreement of the measured value with the true or expected value. Percent Recoveries for the Laboratory Control Samples are calculated to assess accuracy.

Method Blanks are used to assess the level of contamination present in the analytical system. Method Blanks consist of reagent water or an aliquot of sodium sulfate. Method Blanks are taken through all the appropriate steps of an analytical method. Sample data reported is not corrected for blank contamination.

Surrogate Compounds are used to assess the effectiveness of an analytical method in dealing with each sample matrix. Surrogate Compounds are organic compounds which are similar to the target analytes of interest in chemical behavior, but which are not normally found in environmental samples. Percent Recoveries are calculated for each Surrogate Compound.

GROUNDWATER

Quality Control Report Laboratory Control Sample

Category: EPA Method 8270C (Modified) - EPH PAHs by GC/MS-SIM

QC Batch ID: EP-0754-FL

Matrix: Aqueous Units: ug/L

91-20-3	Naphthalene	5.0	· 2.8	55 %	40 - 140 %
83-32-9	Acenaphthene	5.0	2.7	53 %	40 - 140 %
120-12-7	Anthracene	5.0	3.7	74 %	40 - 140 %
129-00-0	Pyrene	5.0	3.4	68 %	40 - 140 %
218-01-9	Chrysene	5.0	3.6	73 %	40 - 140 %

QC Surrogate Compound	Recovery	QE limits
ortho-Terphenyl	94 %	40 - 140 %

Method Reference:

Test Methods for Evaluating Solid Waste, US EPA, SW-846, Third Edition, Update III (1996). Analyte list as specified by the MA DEP Method for the Determination of Extractable Petroleum Hydrocarbons. Method modified by use of selected ion monitoring (SIM) in accordance with Section 7.5.5 of the method. Method protocol modified to include acidification and the surrogate compound in accordance with the MA DEP Method for the Determination of Extractable Petroleum Hydrocarbons.

All calculations performed prior to rounding. Quality Control Limits are defined by the methodology, Report Notations:

or alternatively based upon the historical average recovery plus or minus three standard deviation units.

Quality Control Report Method Blank

Category: EPA Method 8270C (Modified) - EPH PAHs by GC/MS-SIM

QC Batch ID: EP-0754-FB
Matrix: Aqueous

CAS Number		Googentration	or management the party of the	Reportingtum
91-20-3	Naphthalene	BRL	ug/L	0.5
91 - 5 <i>7</i> -6	2-Methylnaphthalene	BRL	ug/L	0.5
208-96-8	Acenaphthylene	BRL	ug/l.	0.5
83-32-9	Acenaphthene	BRL	ug/L	. 0.5
B6-73-7	Fluorene	BRL	ug/L	0.5
85-01-8	Phenanthrene	BRL	ug/L.	0.5
120-12-7	Anthracene	BRL.	ug/L	0.5
206-44-0	Fluoranthene .	BRL	ug/L	0.5
129-00-0	Pyrene	· BRL	ug/L	0.5
56-55-3	Benzo[a]anthracene	BRL	ug/L	0.1
218-01-9	Chrysene	BRL	ug/L	0.1
205-99-2	Benzo[b]fluoranthene	BRL	ug/L	0.1
207-08-9	Benzo[k]fluoranthene	BRL	ug/L	0.1
50 - 32-8	Benzo[a]pyrene	BRL	ug/L	0.1
193-39-5	Indeno[1,2,3-c,d]pyrene	BRL	ug/L	0.1
53-70-3	Dibenzo[a,h]anthracene	BRL	ug/L	0.1
191-24-2	Benzo[g,h,i]perylene	BRL	· ug/L	0.1.

OC Surrogate Compound	MC-5-2014 Recovery MC-5-3 11-12	L. C. Of Limits' 3.24
ortho-Terphenyl	107 %	40 - 140 %

Method Reference:

Test Methods for Evaluating Solid Waste, US EPA, SW-846, Third Edition, Update III (1996). Analyte list as specified by the target analytes of the MA DEP Method for the Determination of Extractable Petroleum Hydrocarbons. Method modified by use of selected ion monitoring (SIM) in accordance with Section 7.5.5 of the method. Method protocol modified to include acidification and the surrogate compound in accordance with the MA DEP Method for the Determination of Extractable Petroleum Hydrocarbons.

Report Notations:

RL Indicates concentration, if any, is below reporting limit for analyte. Reporting limit is the lowest concentration that can be reliably quantified under routine laboratory operating conditions. Reporting limits are adjusted for sample dilution and sample size.

Quality Control Report Laboratory Control Sample

Category: MA DEP EPH Method

QC Batch ID: EP-0754-F Matrix: Water

Units: ug/L

ČAS Number	- Analyte	Spiked	Measured	Recovery	· · OCULIDIES · ·
111-84-2	n-Nonane (C9)	50	22	44 %	40 - 140 %
629-59-4	n-Tetradecane (C14)	50	29	58 %	40 - 140 %
629-92-5	n-Nonadecane (C19)	50	35	70 %	40 - 140 %
112-95-8	n-Eicosane (C20)	50	36	72 %	40 - 140 %
630-02-4	n-Octacosane (C28)	50	33	67 %	40 - 140 %

@CSt	naogate Compounds	Recovery	QC limits
Fractionation:	2-Fluorobiphenyl	80 %	40 - 140 %
	2-Bromonaphthalene	82 %	40 - 140 %
Extraction:	Chloro-octadecane	71 %	40 - 140 %
	ortho-Terphenyl	80 %	40 - 140 %

Method Reference: Method for the Determination of Extractable Petroleum Hydrocarbons, MA DEP (1998).

Report Notations: All calculations performed prior to rounding. Quality Control Limits are defined by the methodology,

or alternatively based upon the historical average recovery plus or minus three standard deviation units.

Quality Control Report Method Blank

Category: MA DEP EPH Method

QC Batch ID: EP-0754-F

Matrix: Water

ERI (Ranges	Goncentration, **-	I Junits	Reporting Winter
n-C9 to n-C18 Aliphatic Hydrocarbons †	BRL	ug/L	500
n-C19 to n-C36 Aliphatic Hydrocarbons T	BRL	ug/L	500
n-C11 to n-C22 Aromatic Hydrocarbons * 0	BRL	ug/L	200
<u>Unadjusted</u> n-C11 to n-C22 Aromatic Hydrocarbons [†]	BRL	ug/L	200

QC	Surrogate Compounds	Recovery	. QCLimity :
Fractionation:	2-Fluorobiphenyl	82 %	40 - 140 %
	2-Bromonaphthalene	84 %	40 - 140 %
Extraction:	Chloro-octadecane	76 %	40 - 140 %
	ortho-Terphenyl	84 %	40 - 140 %

Method Reference:

Method for the Determination of Extractable Petroleum Hydrocarbons, MA DEP (1998).

- BRL Indicates concentration, if any, is below reporting limit for analyte. Reporting limit is the lowest concentration that can be reliably quantified under routine laboratory operating conditions. Reporting limits are adjusted for sample dilution and sample size.
 - + Hydrocarbon range data excludes concentrations of any surrogate(s) and/or internal standards eluting in that range.
- o n-C11 to n-C22 Aromatic Hydrocarbons range data excludes the method target analyte concentrations.

Quality Control Report Laboratory Control Sample

Category: MA DEP VPH Method

QC Batch ID: VG3-1291-W

Matrix: Aqueous Units: ug/L

CAS-Number	Analyte 1	Spiked /	Measured	A. Recovery	QC Bimits
1634-04-4	Methyl tert-butyl Ether	50	43	86%	70 - 130 %
71-43-2	Benzene	50	53	106%	70 - 130 %
108-88-3	Toluene	50	57	114%	70 - 130 %
100-41-4	Ethylbenzene	50	52	104%	70 - 130 %
108-38-3 and	meta- Xylene and para-	100	120	117%	70 - 130 %
106-42-3	Xylene				
95-47-6	ortho- Xylene	50	58	115%	70 - 130 %
91-20-3	Naphthalene	50	63	127%	70 - 130 %

, QC Sumagate Compounds	Regiovery/	QC limits
2,5-Dibromotoluene (PID)	101 %	70 - 130 % ·
2,5-Dibromotaluene (FID)	97 %	70 - 130 %

Method Reference: Method for the Determination of Volatile Petroleum Hydrocarbons, MA DEP (1998).

Report Notations: All calculations performed prior to rounding. Quality Control Limits are defined by the methodology,

or alternatively based upon the historical average recovery plus or minus three standard deviation units.

Quality Control Report Method Blank

Category: MA DEP VPH Method

QC Batch ID: VG3-1291-W Matrix: Aqueous

VPH Ranges	Goncentration	. Units	Reporting Cimit
n-C5 to n-C8 Aliphatic Hydrocarbons 10	BRL	ug/L	20
n-C9 to n-C12 Aliphatic Hydrocarbons **	BRL	ug/L	20
n-C9 to n-C10 Aromatic Hydrocarbons ⁷	BRL	ug/L	20
<u>Unadjusted</u> n-C5 to n-C8 Aliphatic Hydrocarbons ^f	BRL	ug/L	20
Unadjusted n-C9 to n-C12 Aliphatic Hydrocarbons †	BRL	ug/L	. 20

CAS Number	Target Analytes	Concentration	Units	Reporting Limit
1634-04-4	Methyl tert-butyl Ether "	BRL	ug/L	5
71-43-2	Benzene *	BRL	ug/L	1
108-88-3	Toluene "	BRL	ug/L	, 5
100-41-4	Ethylbenzene *	BRL	ug/L	5 .
108-38-3 and	meta- Xylene and para -	BRL	ug/L	5
106-42-3	Xylene [‡]			
95-47-6	ortho- Xylene *	BRL	ug/L	5
91-20-3	Naphthalene	BRL	ug/L	5

(19) - 4 OC Sumogate Compounds	Recovery	SA ZOC bimits
2,5-Dibromotoluene (PID)	116 %	70 - 130 %
2,5-Dibromotoluene (FID)	109 %	<i>7</i> 0 - 130 %

Method Reference:

Method for the Determination of Volatile Petroleum Hydrocarbons, MA DEP (1998).

- BRL Indicates concentration, if any, is below reporting limit for analyte. Reporting limit is the lowest concentration that can be reliably quantified under routine laboratory operating conditions. Reporting limits are adjusted for sample dilution and sample size.
- † Hydrocarbon range data excludes concentrations of any surrogate(s) and/or internal standards eluting in that range.
- on-C5 to n-C8 Aliphatic Hydrocarbons range data excludes the method target analyte concentrations.
- n-C9 to n-C12 Aliphatic Hydrocarbons range data excludes the method target analyte concentrations and the concentration for the n-C9 to n-C10 Aromatic Hydrocarbons range.
- Analyte elutes in the n-C5 to n-C8 Aliphatic Hydrocarbons range.
 - ‡ Analyte elutes in the n-C9 to n-C12 Aliphatic Hydrocarbons range.

Certifications and Approvals

CONNECTICUE Department of the thir services and uses

Potable Water, Wastewater/Trade Waste, Sewage/Effluent, and Soil

pH, Conductivity, Acidity, Alkalinity, Hardness, Chloride, Fluoride, Ammonia, Kjeldahl Nitrogen, Nitrate, Nitrite, Orthophosphate, Total Dissolved Solids, Cyanide, Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Total Chromium, Hexavalent Chromium, Cobait, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Tin, Titanium, Vanadium, Zinc, Purgeable Halocarbons, Purgeable Aromatics, Pesticides, PCBs, PCBs in Oil, Ethylene Dibromide, Phenols, Oil and Grease.

MAINE Department of Humant Services, MAI

Drinking Water

Reciprocal certification in accordance with Massachusetts certification for drinking water analytes.

Waste Water

Reciprocal certification in accordance with Massachusetts certification for waste water analytes.

MASSAGHUSEIFIS Department of Environmental Protection, MEMA 2008

Potable Water

Antimony, Arsenic, Barium, Berylilum, Cadmium, Chromium, Copper, Lead, Mercury, Nickel, Selenium, Thallium, Nitrate-N, Nitrite-N, Fluoride, Sodium, Sulfate, Cyanide, Turbidity, Residual Free Chlorine, Calcium, Total Alkalinity, Total Dissolved Solids, pH, Trihalomethanes, Volatile Organic Compounds, 1,2-Dibromoethane, 1,2-Dibromo-3-chloropropane, Total Coliform, Fecal Coliform, Heterotrophic Plate Count, E-Coli

Non-Potable Water

Aluminum, Antimony, Arsenic, Beryllium, Cadmium, Chromium, Cobalt, Copper, Iron, Lead, Manganese, Mercury, Molybdenum, Nickel, Selenium, Silver, Strontium, Thallium, Titanium, Vanadium, Zinc, pH, Specific Conductance, Total Dissolved Solids, Total Hardness, Calcium, Magnesium, Sodium, Potassium, Total Alkalinity, Chloride, Fluoride, Sulfate, Ammonia-N, Nitrate-N, Kjeldahl-N, Orthophosphate, Total Phosphorus, Chemical Oxygen Demand, Biochemical Oxygen Demand, Total Cyanide, Non-Filterable Residue, Total Residual Chlorine, Oil and Grease, Total Phenolics, Volatile Halocarbons, Volatile Aromatics, Chloridane, Aldrin, Dieldrin, DDD, DDE, DDT, Heptachlor, Heptachlor Epoxide, Polychlorinated Biphenyls (valer), Polychlorinated Biphenyls (vol.).

MIGHIGAN, Department of Environmental Quality

Drinking Water

Tribalomethanes, Regulated and Unregulated Volatile Organic Compounds by EPA Method 524.2; 1,2-Dibromoethane, 1,2-Dibromo-3-chloropropane by EPA Method 504.1

NEW HAMPSHIRE, Department of Environmental Services, 2027,98

Drinking Water

Metals by Graphite Fumace, Metals by ICP, Mercury, Nitrite-N, Orthophosphate, Residual Free Chlorine, Turbidity, Total Filterable Residue, Calcium Hardness, pH, Alkalinity, Sodium, Sulfate, Total Cyanide, Insecticides, Herbicides, Base/Neutrals, Trihalomethanes, Volatile Organics, Vinyl Chloride, DBCP, EDB, Nitrate-N.

Wastewater

Metals by Graphite Furnace, Metals by ICP, Mercury, pH, Specific Conductivity, TDS, Total Hardness, Calcium, Magnesium, Sodium, Potassium, Total Alkalinity, Chloride, Fluoride, Sulfate, Ammonia-N, Nitrate-N, Orthophosphate, TKN, Total Phosphorus, COD, BOD, Non-Filterable Residue, Oil & Grease, Total Phenolics, Total Residual Chlorine, PCBs in Water, PCBs in Oil, Pesticides, Volatile Organics, Total Cyanide.

REIODEISPAND, Department of Health, 54

Surface Water, Air, Wastewater, Potable Water, Sewage

Chemistry: Organic and Inorganic

Groundwater Analytical, Inc. P.O. Box 1200 228 Main Street Buzzards Bay, MA 02532

Telephone (508) 759-4441 FAX (508) 759-4475

October 30, 2000

Mr. Steve Rumba
 WEB Engineering
 106 Longwater Drive
 Norwell, MA 02061

Project:

Bossi's Service Center/00-E-033

Lab ID:

36733

Sampled:

10-13-00

Dear Steve:

Enclosed are the Extractable Petroleum Hydrocarbons and Volatile Petroleum Hydrocarbons Analyses performed for the above referenced project. This project was processed for Standard Two Week turnaround.

This letter authorizes the release of the analytical results, and should be considered a part of this report. This report contains a project narrative indicating project changes and non-conformances, a brief description of the Quality Assurance/Quality Control procedures employed by our laboratory, and a statement of our state certifications.

Lattest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Should you have any questions concerning this report, please do not hesitate to contact me.

Sincerely,

Jonathan R. Sanford

President

JRS/pmb Enclosures

Massachusetts DEP EPH Method Extractable Petroleum Hydrocarbons by GC/FID

Field ID: MW-1 (10'-12') Laboratory ID: 36733-01 Project: Bossi's Service Center/00-E-033 QC Batch ID: EP-1037-M Client: WEB Engineering Sampled: 10-13-00 Container: 250 mL Glass Received: 10-16-00 Extracted: 10-19-00 Preservation: Cool Analyzed: Matrix: Soil 10-26-00

% Moisture: 8 Dilution Factor: Aliphatic: 1 Aromatic: 1

The Econdenium long was a second	vie Uniter v	Reportinglamit
BRL	mg/Kg .	-31
BRL	mg/Kg	3.1
BRL .	mg/Kg	31
BRL	mg/Kg	31
		BRL mg/Kg

ticas:Number:	Tanget Analytes	26 Concentration FF	. Dinis	Reporting timit
91-20-3	Naphthalene	BRL	mg/Kg	0.51
91-57-6	2-Methylnaphthalene :	BRL	mg/Kg	0.51
85-O1-B	Phenanthrene	BRL	mg/Kg	0.51
83-32-9	Acenaphthene	BRL	mg/Kg	0.51

QC:Surriogate Compounds - CRecovery - QC:JUmits - C					
Fractionation:	2-Fluorobiphenyl	95 %	: 40 - 140 % ·		
	2-Bromonaphthalene	. 83 %	40 - 140 %		
Extraction:	Chloro-octadecane	73 %	: 40 - 140 %		
	ortho-Terphenyl	76 %	40 - 140 %		

2 (QA/QIcsectification) & as ear, as a second	文章,"这一人"。
1 Were all OA/OC procedures required by the method followed?	Yes

Were all performance/acceptance standards for the required QA/QC procedures achieved?
 Were any significant modifications made to the method, as specified in Section 11.3.1.1?

Method non-conformances indicated above are detailed below on this data report, or in the accompanying project narrative and project quality control report. Release of this data is authorized by the accompanying signed project cover letter. The accompanying cover letter, project narrative and quality control report are considered part of this data report.

Method Reference:

Method for the Determination of Extractable Petroleum Hydrocarbons, MA DEP (1998). Results are calculated on a dry weight basis. Method modified by use of microwave accelerated solvent extraction technique.

Yes

Yes

- BRL indicates concentration, if any, is below reporting limit for analyte. Reporting limit is the lowest concentration that can be reliably quantified under routine laboratory operating conditions.

 Reporting limits are adjusted for sample dilution, percent moisture and sample size.
 - + Hydrocarbon range data excludes concentrations of any surrogate(s) and/or internal standards eluting it that range.
- o n-C11 to n-C22 Aromatic Hydrocarbons range data excludes the method target analyte concentrations.

Massachusetts DEP EPH Method Extractable Petroleum Hydrocarbons by GC/FlD

Field ID:	MW-2 (10'-12')	Laboratory ID:	36733-02
Project:	Bossi's Service Center/00-E-033	QC Batch ID:	EP-1037-M
Client:	WEB Engineering	Sampled:	10-13-00
Container:	250 mL Glass	Received:	10-16-00
Preservation:	Cool	Extracted:	10-19-00
Matrix:	Soil	Analyzed:	10-26-00

% Moisture: 10 Dilution Factor: Aliphatic: 1 Aromatic: 1

EPH-Ranges		Concentration: * *	គេ ម៉ាពនេះ	Reportingetimi
	liphatic Hydrocarbons †	BRL	mg/Kg	31
n-C19 to п-C36 /	Aliphatic Hydrocarbons ⁷	BRL	mg/Kg	31
n-C11 to n-C22	Aromatic Hydrocarbons ^{† 0}	BRL	mg/Kg	31
Unadiusted n-C11	to n-C22 Aromatic Hydrocarbons †	BRĹ	mg/Kg	31
CÂS Numbers	Tärget Analytes	Goncentration	Units 20	Reportingdimi
91-20-3	Naphthalene	BRL	mg/Kg .	0.52
91-5 <i>7</i> -6	2-Methylnaphthalene	BRL	mg/Kg	0.52
85-01-8	Phenanthrene	BRL	mg/Kg	0.52
83-32-9	Acenaphthene	BRL	mg/Kg	0.52
100 m	Surrogate:Compounds	Recovery - 484	figgg	Limits 😁 🛴
Fractionation:	2-Fluorobiphenyl	91 %		140 %
	2-Bromonaphthalene	88 %	40 -	140 %
Extraction:	Chloro-octadecane	79 %	40 -	140 %
	artha Tambanul	90.9/	40	1.40.9/

-		9 4 7	and to The	- DOA QC	Gentifi	cation	
	11 - 11	Karan Karan I and Andrews	1 11 1	.1 1 2 15			

Were all QAQC procedures required by the method followed?

Yes

Were all performance/acceptance standards for the required QA/QC procedures achieved?
 Were any significant modifications made to the method, as specified in Section 11.3.1.1?

Yes

Method non-conformances indicated above are detailed below on this data report, or in the accompanying project narrative and project quality control report. Release of this data is authorized by the accompanying signed project cover letter. The accompanying cover letter, project narrative and quality control report are considered part of this data report.

Method Reference:

Method for the Determination of Extractable Petroleum Hydrocarbons, MA DEP (1998). Results are calculated on a dry weight basis. Method modified by use of microwave accelerated solvent extraction technique.

- BRL Indicates concentration, if any, is below reporting limit for analyte. Reporting limit is the lowest concentration that can be reliably quantified under routine laboratory operating conditions.

 Reporting limits are adjusted for sample dilution, percent moisture and sample size.
- † Hydrocarbon range data excludes concentrations of any surrogate(s) and/or internal standards eluting in that range.
- o n-C11 to n-C22 Aromatic Hydrocarbons range data excludes the method target analyte concentrations.

Massachusetts DEP EPH Method Extractable Petroleum Hydrocarbons by GC/FID

Field ID:	MW-3 (10'-12')	Laboratory ID:	36733-03
Project:	Bossi's Service Center/00-E-033	QC Batch ID:	EP-1037-M
Client:	WEB Engineering	Sampled:	10-13-00
Container:	250 mL Glass	Received:	10-16-00
Preservation:	Cool	Extracted:	10-19-00
Matrix:	Soil	Analyzed:	10-26-00
% Moisture:	5	Dilution Factor:	Aliphatic: 1 Aromatic: 1

n-C9 to n-C18 A	liphatic Hydrocarbons	BRL	mg/Kg	30
n-C19 to n-C36	Aliphatic Hydrocarbons †	BRL	mg/Kg	30
n-C11 to n-C22	Aromatic Hydrocarbons † *	BRL ·	mg/Kg	. 30
<u>Unadjusted</u> n-C11	to n-C22 Aromatic Hydrocarbons †	BRL	rng/Kg	30
-CAS Number	Target Analytes - Variable	Concentration:		Reporting/Lin
91-20-3	Naphthalene	BRL ·	mg/Kg	0.50
91-57-6	2-Methylnaphthalene	BRL	mg/Kg	0.50
85-Q1-B	Phenanthrene	BRL	mg/Kg	0.50
83-32-9	Acenaphthene	. BRL	mg/Kg	0.50
Ja QC	Surregate/Compounds	Recovery	1章生7.457.000	mits Falls
Fractionation:	2-Fluorobiphenyl	92 %	40 - 1	
	2-Bromonaphthalene	89 %	40 - 1	40 % .
Extraction:	Chloro-octadecane	75 %	40 - 1	40 %
	ortho-Terphenyl	76 %	40 - 1	40 %

1. Were all QA/QC procedures required by the method followed?

- Yes
- Were all performance/acceptance standards for the required QA/QC procedures achieved?
 Were any significant modifications made to the method, as specified in Section 11.3.1.1?
- .Yes

Method non-conformances indicated above are detailed below on this data report, or in the accompanying project narrative and project quality control report. Release of this data is authorized by the accompanying signed project cover letter. The accompanying cover letter, project narrative and quality control report are considered part of this data report.

Method Reference:

Method for the Determination of Extractable Petroleum Hydrocarbons, MA DEP (1998). Results are calculated on a dry weight basis. Method modified by use of microwave accelerated solvent extraction technique.

- BRL Indicates concentration, if any, is below reporting limit for analyte. Reporting limit is the lowest concentration that can be reliably quantified under routine laboratory operating conditions. Reporting limits are adjusted for sample dilution, percent moisture and sample size.
 - + Hydrocarbon range data excludes concentrations of any surrogate(s) and/or internal standards eluting in that range.
- 0 n-C11 to n-C22 Aromatic Hydrocarbons range data excludes the method target analyte concentrations.

Massachusetts DEP EPH Method Extractable Petroleum Hydrocarbons by GC/FID

Field ID:	MW-4 (15'-15.5')	Laboratory ID:	36733-04
Project:	Bossi's Service Center/00-E-033	QC Batch ID:	EP-1037-M
Client:	WEB Engineering	 Sampled: 	10-13-00
Container	250 mL Glass	Received:	10-16-00
Preservation:	Cool	Extracted:	10-19-00
Matrix:	Soil	Anałyzed:	10-26-00
% Moisture:	11	Dilution Factor:	Aliphatic: 1 Aromatic: 1

ERIA Rangest	Goncentration	n a Zunitsæk	Reporting Limit
n-C9 to n-C18 Aliphatic Hydrocarbons †	350	mg/Kg	. 33
n-C19 to n-C36 Aliphatic Hydrocarbons T	BRL	mg/Kg	33
n-C11 to n-C22 Aromatic Hydrocarbons † 0	120	mg/Kg	33
Unadjusted n-C11 to n-C22 Aromatic Hydrocarbons	180	mg/Kg	33

∠CAS Numbe	75 Target Analytes	Gongentration	1 河南區	Reporting Limit
91-20-3	Naphthalene	29	mg/Kg	0.55
91-57-6	2-Methylnaphthalene	. 26	mg/Kg	0.55
85-01-8	Phenanthrene	BRL	mg/Kg	0.55 . ·
83-32-9	Acenaphthene	BRL	mg/Kg	0.55

EN 1-2" NOS	Survogate Compounds 😘 🦠	Recovery 1	OCEmits 1
Fractionation:	2-Fluorobiphenyl	94 %	40 - 140 %
	2-Bromonaphthalene	88 %	40 - 140 %
Extraction:	Chloro-octadecane	64 %	. 40 - 140 %
	ortho-Terphenyl	76 %	40 - 140 %

QAQC Genification 2.1. A Fix to Yes

- 1. Were all QA/QC procedures required by the method followed?
- Were all performance/acceptance standards for the required QA/QC procedures achieved?
- 3. Were any significant modifications made to the method, as specified in Section 11.3.1.1?

Method non-conformances indicated above are detailed below on this data report, or in the accompanying project narrative and project quality control report. Release of this data is authorized by the accompanying signed project cover letter. The accompanying cover letter, project narrative and quality control report are considered part of this data report.

Method Reference:

Method for the Determination of Extractable Petroleum Hydrocarbons, MA DEP (1998). Results are calculated on a dry weight basis. Method modified by use of microwave accelerated solvent extraction technique.

Yes

Yes

- BRL Indicates concentration, if any, is below reporting limit for analyte. Reporting limit is the lowest concentration that can be reliably quantified under routine laboratory operating conditions. Reporting limits are adjusted for sample dilution, percent moisture and sample size.
 - Hydrocarbon range data excludes concentrations of any surrogate(s) and/or internal standards eluting in that range.
- n-C11 to n-C22 Aromatic Hydrocarbons range data excludes the method target analyte concentrations.

Massachusetts DEP VPH Method Volatile Petroleum Hydrocarbons by GC/PID/FID

Field ID:

MW-1 (101-121)

Laboratory ID:

36733-05

Project:

Bossi's Service Center/00-E-033

QC Batch ID:

VG1-1140-E 10-13-00

Client

WEB Engineering 60 mL Glass Vial

Sampled: Received:

10-16-00

Container: Preservation:

Methanol / Cool

Analyzed:

10-23-00

Matrix:

Soil

Dilution Factor: 1

% Moisture:

- WP (Hi Ranges)	Z Concentration -	Dails - T	Reporting lamid
n-C5 to n-C8 Aliphatic Hydrocarbons † 0	BRL	mg/Kg	1.0 .
n-C9 to n-C12 Aliphatic Hydrocarbons ^{† ⊗}	1.9	mg/Kg	1.0
n-C9 to n-C10 Aromatic Hydrocarbons T	BRL	mg/Kg	1.0
Unadjusted n-C5 to n-C8 Aliphatic Hydrocarbons f	BRL	mg/Kg	1.0
Unadjusted n-C9 to n-C12 Aliphatic Hydrocarbons †	3.1	mg/Kg	1.0

CASNumber	llanget Analytes	eoncentration ,	ट पाताक	Reporting Limit
1634-04-4	Methyl tert -butyl Ether *	BRL	mg/Kg	0.10
71-43-2	Benzene **	BRL	mg/Kg	0.10
108-88-3	Toluene *	BRL	mg/Kg	0.10
100-41-4	Ethylbenzene [‡]	BRL	mg/Kg	0.10
108-38-3 and	meta- Xylene and para -	0.13	mg/Kg	0.10
106-42-3	Xylene [‡]			
95-47-6	ortho- Xylene [‡]	BRL	mg/Kg	0.10
91-20-3	Naphthaiene	BRL	mg/Kg	0.50

OC Surrogate Compounds:	Recovery 7.22	and the Octomics of the
2,5-Dibromotoluene (PID)	109 %	70 - 130 %
2,5-Dibromotoluene (FID)	129 %	70 - 130 %

ONOC Gentifications is

- Were all QA/QC procedures required by the method followed?
- Were all performance/acceptance standards for the required QA/QC procedures achieved?

Yes Yes

3. Were any significant modifications made to the method, as specified in Section 11.3.2.13

Method non-conformances indicated above are detailed below on this data report, or in the accompanying project narrative and project quality control report. Release of this data is authorized by the accompanying signed project cover letter. The accompanying cover letter, project narrative and quality control report are considered part of this data report.

Method Reference:

Method for the Determination of Volatile Petroleum Hydrocarbons, MA DEP (1998). Results are calculated on a dry weight basis.

- Indicates concentration, if any, is below reporting limit for analyte. Reporting limit is the lowest concentration that can be reliably quantified under routine laboratory operating conditions. Reporting limits are adjusted for sample dilution, percent moisture and sample size.
- Hydrocarbon range data excludes concentrations of any surrogate(s) and/or internal standards eluting in that range.
- n-C5 to n-C8 Aliphatic Hydrocarbons range data excludes the method target analyte concentrations.
- n-C9 to n-C12 Aliphatic Hydrocarbons range data excludes the method target analyte concentrations and the concentration for the n-C9 to n-C10 Aromatic Hydrocarbons range.
- Analyte elutes in the n-C5 to n-C8 Aliphatic Hydrocarbons range.
 - Analyte elutes in the n-C9 to n-C12 Aliphatic Hydrocarbons range.

Massachusetts DEP VPH Method Volatile Petroleum Hydrocarbons by GC/PID/FID

Field ID:

MW-3 (10'-12')

Laboratory ID:

36733-06

Project:

Bossi's Service Center/00-E-033

OC Batch ID:

VG1-1140-E

Client: Container. WEB Engineering 60 mL Glass Vial

Sampled: Received: 10-13-00 10-16-00

Preservation: Matrix:

Methanol / Cool

Analyzed:

10-23-00

% Moisture:

Soil 5

Dilution Factor:

F-WRIB Ranges	Concentration 4 4	as Unus	Reporting limit
n-C5 to n-C8 Aliphatic Hydrocarbons 10	2.0	mg/Kg	1.0
n-C9 to n-C12 Aliphatic Hydrocarbons ^{† ⊗}	2.2	mg/Kg	1.0
n-C9 to n-C10 Aromatic Hydrocarbons †	1.4	mg/Kg	1.0
Unadjusted n-C5 to n-C8 Aliphatic Hydrocarbons †	. 2.0	mg/Kg	1.0
Unadjusted n-C9 to n-C12 Aliphatic Hydrocarbons t	3.6	mg/Kg	1.0

(CAS) Number	allarget Analytes	Congentration	1 -100115	Keporingvimit
1634-04-4	Methyl tert-butyl Ether *	BRL	mg/Kg	0.10
71-43-2	Benzene *	BRL	mg/Kg	0.10
108-88-3	Toluene "	BRL	mg/Kg	0.10
100-41-4	Ethylbenzene *	BRL	mg/Kg	0.10
108-38-3 and	meta- Xylene and para -	BRL	mg/Kg	0.10
106-42-3	Xylene [†]			
95-47-6	ortho- Xylene *	BRL	mg/Kg	0.10
91-20-3	Naphthalene	BRL	mg/Kg	0.50

Compounds to the state of the s	Recovery 2015 A	LA MELimits Const
2,5-Dibromotoluene (PID)	106 %	70 - 130 % .
2:5-Dibromotoluene (FID)	92 %	70 - 130 %

QX/QCCentification/4

Were all QAQC procedures required by the method followed?

Yes Yes

2. Were all performance/acceptance standards for the required QA/QC procedures achieved? 3. Were any significant modifications made to the method, as specified in Section 11.3.2.1?

Method non-conformances indicated above are detailed below on this data report, or in the accompanying project narrative and project quality control report. Release of this data is authorized by the accompanying signed project cover letter. The accompanying cover letter, project narrative and quality control report are considered part of this data report.

Method Reference:

Method for the Determination of Volatile Petroleum Hydrocarbons, MA DEP (1998). Results are calculated on a dry weight basis.

- BRL Indicates concentration, if any, is below reporting limit for analyte. Reporting limit is the lowest concentration that can be reliably quantified under routine laboratory operating conditions. Reporting limits are adjusted for sample dilution, percent moisture and sample size.
 - Hydrocarbon range data excludes concentrations of any surrogate(s) and/or internal standards eluting in that range.
 - n-C5 to n-C8 Aliphatic Hydrocarbons range data excludes the method target analyte concentrations.
 - n-C9 to n-C12 Aliphatic Hydrocarbons range data excludes the method target analyte concentrations and the concentration for the n-C9 to n-C10 Aromatic Hydrocarbons range.
 - Analyte elutes in the n-C5 to n-C8 Aliphatic Hydrocarbons range.
 - Analyte elutes in the n-C9 to n-C12 Aliphatic Hydrocarbons range.

Massachusetts DEP VPH Method Volatile Petroleum Hydrocarbons by GC/PID/FID

Field ID:

MW-4 (15'-5.5')

Laboratory ID:

36733-07

Project:

Bossi's Service Center/00-E-033

QC Batch ID:

VG1-1140-E

Client: Container: WEB Engineering 60 mL Glass Vial

Sampled: Received: 10-13-00 10-16-00

Preservation:

Methanol / Cool

Analyzed:

10-24-00

Matrix:

Soil

Dilution Factor:

40

% Moisture:

XPI4 Ranges	. Concentration	C > Units - R	eporting Limit
n-C5 to n-C8 Aliphatic Hydrocarbons * 0	2,100	mg/Kg	33
n-C9 to n-C12 Aliphatic Hydrocarbons [™]	BRL	mg/Kg	33
n-C9 to n-C10 Aromatic Hydrocarbons 1	2,400	mg/Kg	33
Unadjusted n-C5 to r-C8 Aliphatic Hydrocarbons †	2,600	mg/Kg	33
Unadiusted n-C9 to n-C12 Aliphatic Hydrocarbons †	3,000	mg/Kg	. 33 .

CAS Number .	Target Analytes	■Concentration =	Units .	Reporting him
1634-04-4	Methy! tert -butyl Ether "	10	mg/Kg	3.3
71-43-2	Benzene #	BRL	mg/Kg	3.3
108-88-3	Toluene [#]	470	mg/Kg	3.3
100-41-4	Ethylbenzene [‡]	170	mg/Kg	3.3
108-38-3 and	meta- Xylene and para -	620 .	mg/Kg	3.3
106-42-3	Xylene [‡]			
95 -47-6 .	ortho- Xylene *	260	mg/Kg	3.3
91-20-3	Naphthalene	60	mg/Kg	16 '

sec. ≥	Recovery 38 A Par	- 4. a. QCLimits(= 1.2
2,5-Dibromotoluene (PID)	ď	70 - 130 %
2,5-Dibromotoluene (FID)	d	70 - 130 %

OW/OC Centingation 1

- Were all QAQC procedures required by the method followed?
- Were all performance/acceptance standards for the required QA/QC procedures achieved?

Yes И٥

3. Were any significant modifications made to the method, as specified in Section 11.3.2.1?

No

Method non-conformances indicated above are detailed below on this data report, or in the accompanying project narrative and project quality control report. Release of this data is authorized by the accompanying signed project cover letter. The accompanying cover letter, project narrative and quality control report are considered part of this data report.

Method Reference:

Method for the Determination of Volatile Petroleum Hydrocarbons, MA DEP (1998). Results are calculated on a dry weight basis.

- BRL Indicates concentration, if any, is below reporting limit for analyte. Reporting limit is the lowest concentration that can be reliably quantified under routine laboratory operating conditions. Reporting limits are adjusted for sample dilution, percent moisture and sample size.
 - t Hydrocarbon range data excludes concentrations of any surrogate(s) and/or internal standards eluting in that range.
- n-C5 to n-C8 Aliphatic Hydrocarbons range data excludes the method target analyte concentrations.
- n-C9 to n-C12 Aliphatic Hydrocarbons range data excludes the method target analyte concentrations and the concentration for the n-C9 to n-C10 Aromatic Hydrocarbons range.
- П Analyte elutes in the n-C5 to n-C8 Aliphatic Hydrocarbons range.
- ‡ Analyte elutes in the n-C9 to n-C12 Aliphatic Hydrocarbons range.
- Indicates surrogate recovery outside recommended limits due to réquired sample dilution.

Project Narrative

Project: Client: Bossi's Service Center/00-E-033

WEB Engineering

Lab ID:

36733

Received:

10-16-00

A Physical Condition or Sample's

This project was received by the laboratory in satisfactory condition. The sample(s) were received undamaged in appropriate containers with the correct preservation.

B. Project Documentation

This project was accompanied by satisfactory Chain of Custody documentation. The sample container label(s) agreed with the Chain of Custody.

C: Analysis of Sample(s

No analytical anomalies or non-conformances were noted by the laboratory during the processing of these sample(s). All data contained within this report are released without qualification.

5-12 12.5 Sampling DATE INSTRUCTIONS: Use separate line for each container (except replicates). Project Manage Sampler Name: Project Number: GROUNDWATER ANALYTICAL S.1552C Ų REMARKS / SPECIAL INSTRUCTIONS TIME N. C. S. 35.00 Mar (10:-12) MUA (15) 15 5 UM BA CIMBA ZERUL-JE DENTIFICATION SAMPLE ZZZ Flrm: City / State / Zip: Address: AM 1 H MOTOL 200 **企業** 企業 企業 WATER 5DIL 製造機 2000 Type -DELLAM GUES 228 Main Street, P.O. Box 1200 Buzzards Bay, MA 02532 Telephone (508) 759-4441 FAX (508) 759-4475 ERAB THE P 1323 - 2 200 遊戲記述 0.3 40ml VOA Val DNHORIOSTOME ☐ RCRA/Haz: Waste Char. □ NPDES/Clean Water Act ☐ Safe Drinking Water Act
☐ MA DEP Form 12.5 24.5 24.5 **是** Specify State: Specify Category: _ □ RCGW - 2 □ RCS DRCGW-1 DRCS-1 Reportable Concentrations Regulatory Program Container(s) 02.30 **突翻起跳跃** 100 與思想學術 医胸膜 医胸膜 医阴道 250mL/8 oz Plastic 1 Street is a Party 5 光頭電影響 風景器 **第2** が問題のの意識を認 1L/S2 oz Plastie DATA QUALITY OBJECTIVES 120mL STERIL STANDARD (10 Business Days) **新教育的教育教育** C) RUSH (RAN-Many regulatory programs and EPA methods require project specific QC. Project specific QC. Project specific QC includes Sample Duplicates, Matrix Spikes, and/or Matrix Spikes Duplicates. Laboratory QC is not project specific unless preservanged. Project specific QC samples are charged on a per sample basis. For water samples, MS, MSD and Sample Duplicate requires an additional ☐ Matrix Splke Duplicate ○ Mairlx Splke □ Sample Duplicate Project Specific QC Required sample allquot. FAX Number: (Rush requires Rush Authorization Number) Purchase Order No.; Please FAX AND WORK ORDER CHAIN-OF-CUSTODY RECORD PWO, Preservation K,50, NAON Hethane Socian B TURNAROUND 2.2 12 18. 18. 200 Project Specific QC がいる。 YES: Fline BILLING KO 90.33 YES GWA Reference No.: 36 7.33 (LABORATORY NUMBER (Lab Usa Only) Selection of QC Sample □ Please use sample: Sale cand by laboratory 0 N O 3 SCRA/21E NPDES SDWA ZMOLTRO CT MASSISTED. D ENGINEERS D 524.2 □ #2#(\$/Extende □ 520Erierde Rellกิจุบัรhad by: DAM WITES Meithod of Shipment; |XIGWA Courier | □ | | □ UPS |□ Hand | □ Alau Than Aduque Hill (16/00) 5130 | Canal Ralinquished by: ☐ Add MITBE Dest ☐ #de MTBE C VIC ALLEE rished by D 80% ☐ \$270C/TO D 625 C) \$270G/PAHs Deb CO BZS/PAHs only CI SAN DWy NOTE: AI) - 57 □ SOE Pestick D 285 C 4032 PC9 C) SOMPCE only samples submitted subject to Standard Terms and Conditions D5)11 D 8151 H □ 515.1 D 2011 □ \$94.1 ED8/09CP 114 100-4-01 Date Dale Date D ₹ RCR □ 13 Priorit CHAIN-OF-CUSTODY RECORD 17 23 TAI ANALYSIS REQUEST Tlme Specify: □ Diam Time Time C) 418.3 (T28-IS Received by: Received by Laboratory: Received by: Garrie Browney alan II MA DEP EPH with tarpets be EPH will PARE I EPH Cartica reco GENERO DA ASTAS DESERVADO HJ. Jen maddiga Corrosivity (as pit) [] Nesctivity [] top:SatisZty (as Fassispoint) [] Paint Piter ☐ Harate ☐ Chloride ☐ Spilate ☐ TOS ☐ With on raverse hereof General Chemistry Custody Seal/ Cooler Serial Shipping/Airbili Number: Recelpt Temperature: 6 Number: ï C) CED ID TOC ☐ 800 ☐ TES ☐ TE 41299 D Countrie, Total & Cyanida, Physic □ od □ Dassolved Daypen □ Turbid ☐ Tittal Cottorin ☐ Feral Collins ☐ H

Quality Assurance/Quality Control

At Program Overwiews, as the second

Groundwater Analytical conducts an active Quality Assurance program to ensure the production of high quality, valid data. This program closely follows the guidance provided by *Interim Guidelines and Specifications for Preparing Quality Assurance Project Plans*, US EPA QAMS-005/80 (1980), and *Test Methods for Evaluating Solid Waste*, US EPA, SW-846, Update III (1996).

Quality Control protocols include written Standard Operating Procedures (SOPs) developed for each analytical method. SOPs are derived from US EPA methodologies and other established references. Standards are prepared from commercially obtained reference materials of certified purity, and documented for traceability.

Quality Assessment protocols for most organic analyses include a minimum of one laboratory control sample, one method blank, one matrix spike sample, and one sample duplicate for each sample preparation batch. All samples, standards, blanks, laboratory control samples, matrix spikes and sample duplicates are spiked with internal standards and surrogate compounds. All instrument sequences begin with an initial calibration verification standard and a blank; and excepting GC/MS sequences, all sequences close with a continuing calibration standard. GC/MS systems are tuned to appropriate ion abundance criteria daily, or for each 12 hour operating period, whichever is more frequent.

Quality Assessment protocols for most inorganic analyses include a minimum of one laboratory control sample, one method blank, one matrix spike sample, and one sample duplicate for each sample preparation batch. Standard curves are derived from one reagent blank and four concentration levels. Curve validity is verified by standard recoveries within plus or minus ten percent of the curve.

BY Definitions

Batches are used as the basic unit for Quality Assessment. A Batch is defined as twenty or fewer samples of the same matrix which are prepared together for the same analysis, using the same lots of reagents and the same techniques or manipulations, all within the same continuum of time, up to but not exceeding 24 hours.

Laboratory Control Samples are used to assess the accuracy of the analytical method. A Laboratory Control Sample consists of reagent water or sodium sulfate spiked with a group of target analytes representative of the method analytes. Accuracy is defined as the degree of agreement of the measured value with the true or expected value. Percent Recoveries for the Laboratory Control Samples are calculated to assess accuracy.

Method Blanks are used to assess the level of contamination present in the analytical system. Method Blanks consist of reagent water or an aliquot of sodium sulfate. Method Blanks are taken through all the appropriate steps of an analytical method. Sample data reported is not corrected for blank contamination.

Surrogate Compounds are used to assess the effectiveness of an analytical method in dealing with each sample matrix. Surrogate Compounds are organic compounds which are similar to the target analytes of interest in chemical behavior, but which are not normally found in environmental samples. Percent Recoveries are calculated for each Surrogate Compound.

Quality Control Report Laboratory Control Sample

Category: MA DEP EPH Method

QC Batch ID: EP-1037-M

Matrix: Soil Units: mg/Kg

CAS Numbe	版 A Analyte -	Spikedia	J Measured L	Recovery &	Leocalmis
111-84-2	n-Nonane (C9)	5.0	2.4	47 %	40 - 140 %
629-59-4	n-Tetradecane (C14)	5.0	2.9	59 %	40 - 140 %
629-92-5	n-Nonadecane (C19)	5.0	3.4	69 %	40 - 140 %
112-95-8	n-Eicosane (C20)	5.0	3.6	72 %	40 - 140 %
630-02-4	n-Octacosane (C28)	5.0	3.5	70 %	40 - 140 %
91-20-3	Naphthalene	5.0	2.7	53 %	40 - 140 %
83-32-9	Acenaphthene	5.0	3.0	60 %	40 - 140 %

COCS	unogate Compounds	Recovery is the	@Chmits - 3
Fractionation:	2-Fluorobiphenyl	85 %	40 - 140 %
	2-Bromonaphthalene	83 %	40 - 140 %
Extraction:	Chloro-octadecane	73 %	40 - 140 %
	ortho-Terphenyl	69 %	40 - 140 %

Method Reference:

Method for the Determination of Extractable Petroleum Hydrocarbons, MA DEP (1998).

Report Notations:

All calculations performed prior to rounding. Quality Control Limits are defined by the methodology, or alternatively based upon the historical average recovery plus or minus three standard deviation units.

Quality Control Report Method Blank

Category: MA DEP EPH Method

QC Batch ID: EP-1037-M

Matrix: Soil

ABRITIKANDES Y Z A A A A A A A A A A A A A A A A A A	concentration as	a Units	Reporting Cimit
n-C9 to n-C18 Aliphatic Hydrocarbons [†]	BRL	mg/Kg	30
n-C19 to n-C36 Aliphatic Hydrocarbons †	BRL	mg/Kg	30
n-C11 to n-C22 Aromatic Hydrocarbons † 0	BRL	mg/Kg	30
Unadjusted n-C11 to n-C22 Aromatic Hydrocarbons †	BRL .	mg/Kg	· 30

CAS: Number	s salarget Analytes	Concentration :	Units	Reportingshimit
91-20-3	Naphthalene	BRL	mg/Kg	0.50
91-57-6	2-Methylnaphthalene	BRL	mg/Kg	0.50
85-01-8	Phenanthrene	BRL	mg/Kg	0.50
83-32-9	Acenaphthene	BRL	mg/Kg	0.50

J. DOC	Surrogate Compounds	GRecovery .	A LOCKSmits 11, A
Fractionation:	2-Fluorobiphenyl	80 %	40 - 140 %
	2-Bromonaphthalene	76 %	40 - 140 %
Extraction:	Chloro-octadecane	82 %	40 - 140 %
	ortho-Terphenyl	75 %	40 - 140 %

Method Reference:

Method for the Determination of Extractable Petroleum Hydrocarbons, MA DEP (1998).

- BRL Indicates concentration, if any, is below reporting limit for analyte. Reporting limit is the lowest concentration that can be reliably quantified under routine laboratory operating conditions. Reporting limits are adjusted for sample dilution, percent moisture and sample size.
 - † Hydrocarbon range data excludes concentrations of any surrogate(s) and/or internal standards eluting in that range.
 - o n-C11 to n-C22 Aromatic Hydrocarbons range data excludes the method target analyte concentrations.

Quality Control Report Laboratory Control Sample

Category: MA DEP VPH Method

QC Batch ID: VG1-1140-E

Matrix: Soil
Units: mg/Kg

TEAS Numbers	Analyte.	Spiked c	, aiMeasu jedlaa	Recovery	de@@dimis
1634-04-4	Methyl tert -butyl Ether	2.5	2.3	92%	70 - 130 %
71-43-2	Benzene	2.5	2.4	96%	70 - 130 %
108-88-3	Toluene	2.5	2.6	106%	70 - 130 %
100-41-4	Ethylbenzene	2.5	2.5	101%	70 - 130 %
108-38-3 and	meta- Xylene and para-	5.0	5.5	110%	70 - 130 %
106-42-3	Xylene			İ	<u> </u>
95-47-6	ortho- Xylene	2.5	2.6	106%	70 - 130 %
91-20-3	Naphthalene	2.5	2.6	104%	70 - 130 %

OG Surrogate Gompounds	2 P → Recovery	OG Limits & Land 3,
2,5-Dibromotoluene (PID)	100 %	70 - 130 %
2,5-Dibromotoluene (FID)	99 %	70 - 130 %

Method Reference: Method for the Determination of Volatile Petroleum Hydrocarbons, MA DEP (1998).

Report Notations: All calculations performed prior to rounding. Quality Control Limits are defined by the methodology, or alternatively based upon the historical average recovery plus or minus three standard deviation units.

Quality Control Report Method Blank

Category: MA DEP VPH Method

QC Batch ID: VG1-1140-E

Matrix: Soil

WRIH Ranges	 Concentration 	Tal Units F	eporting kimit
n-C5 to n-C8 Aliphatic Hydrocarbons To	BRL	mg/Kg	1.0
n-C9 to n-C12 Aliphatic Hydrocarbons T ®	BRL	mg/Kg	1.0
n-C9 to n-C10 Aromatic Hydrocarbons ¹	BRL	mg/Kg	1.0
Unadjusted n-C5 to n-C8 Aliphatic Hydrocarbons †	BRL	mg/Kg	1.0
Unadjusted n-C9 to n-C12 Aliphatic Hydrocarbons ¹	BRL	mg/Kg	1.0

CASINUmber	I analytes	4-7 Concentration To See	Pas Unitsia.	Reportingsumit
1634-04-4	Methyl tert-butyl Ether "	BRL	mg/Kg	0.10
71-43-2	Benzene "	BRL	mg/Kg	0.10
108-88-3	Toluene "	BRL	mg/Kg	0.10
100-41-4	Ethylbenzene [‡]	BRL	mg/Kg	0.10 '
108-38-3 and	meta- Xylene and para-	BRL	mg/Kg	: 0.10
106-42-3	Xylene [‡]			<u> </u>
95-47-6	ortho- Xylene †	BRL	mg/Kg	0.10
91-20-3	Naphthalene	BRL	mg/Kg	0.50

######################################	- Recovery, of the	r. A. OGLINIST VE
2,5-Dibromotoluene (PID)	123 %	70 - 130 %
2,5-Dibromotoluene (FID)	118 %	70 - 130 %

Method Reference:

Method for the Determination of Volatile Petroleum Hydrocarbons, MA DEP (1998).

- BRL Indicates concentration, if any, is below reporting limit for analyte. Reporting limit is the lowest concentration that can be reliably quantified under routine laboratory operating conditions. Reporting limits are adjusted for sample dilution, percent moisture and sample size.
 - † Hydrocarbon range data excludes concentrations of any surrogate(s) and/or internal standards eluting in that range.
 - n-C5 to n-C8 Aliphatic Hydrocarbons range data excludes the method target analyte concentrations.
 - n-C9 to n-C12 Aliphatic Hydrocarbons range data excludes the method target analyte concentrations and the concentration for the n-C9 to n-C10 Aromatic Hydrocarbons range.
 - Analyte elutes in the n-C5 to n-C8 Aliphatic Hydrocarbons range.
 - ‡ Analyte elutes in the n-C9 to n-C12 Aliphatic Hydrocarbons range.

Certifications and Approvals

Potable Water, Wastewater/Trade Waste, Sewage/Effluent, and Soil

pH, Conductivity, Acidity, Alkalinity, Hardness, Chloride, Fluoride, Ammonia, Kjeldahl Nitrogen, Nitrate, Nitrite, Orthophosphate, Total Dissolved Solids, Cyanide, Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Total Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Tin, Titanium, Vanadium, Zinc, Purgeable Halocarbons, Purgeable Aromatics, Pesticides, PCBs, PCBs in Oil, Ethylene Dibromide, Phenols, Oil and Grease.

Drinking Water

Reciprocal certification in accordance with Massachusetts certification for drinking water analytes.

Waste Water

Reciprocal certification in accordance with Massachusetts certification for waste water analytes.

MASSACHUSETIS, Department of Environmental Protection, MEMA-1103

Potable Water

Antimony, Arsenic, Barium, Beryllium, Cadmium, Chromium, Copper, Lead, Mercury, Nickel, Selenium, Thallium, Nitrate-N, Nitrite-N, Fluoride, Sodium, Sulfate, Cyanide, Turbidity, Residual Free Chlorine, Calcium, Total Alkalinity, Total Dissolved Solids, pH, Trihalomethanes, Volatile Organic Compounds, 1,2-Dibromoethane, 1,2-Dibromo-3-chloropropane, Total Coliform, Fecal Coliform, Heterotrophic Plate Count, E-Coli

Non-Potable Water

Aluminum, Antimony, Arsenic, Beryllium, Cadmium, Chromium, Cobalt, Copper, Iron, Lead, Manganese, Mercury, Molybdenum, Nickel, Seienium, Silver, Strontium, Thalilum, Titanium, Vanadium, Zinc, pH, Specific Conductance, Total Dissolved Solids, Total Hardness, Calcium, Magnesium, Sodium, Potassium, Total Alkalinity, Coloride, Fluoride, Sulfate, Ammonia-N, Nitrate-N, Kjeldahl-N, Orthophosphate, Total Phosphorus, Chemical Oxygen Demand, Biochemical Oxygen Demand, Total Cyanide, Non-Filterable Residue, Total Residual Chlorine, Oil and Grease, Total Phenolics, Volatile Halocarbons, Volatile Aromatics, Chlordane, Aldrin, Dieldrin, DDD, DDE, DDT, Heptachlor, Heptachlor Epoxide, Polychlorinated Biphenyls (water). Polychlorinated Biphenyls (oil).

MICHIGAN, Department of Environmental Quality

Drinking Water

Trihalomethanes, Regulated and Unregulated Volatile Organic Compounds by EPA Method 524.2; 1,2-Dibromoethane, 1,2-Dibromo-3-chloropropane by EPA Method 504.1

Drinking Water

Metals by Graphite Furnace, Metals by ICP, Mercury, Nitrite-N, Orthophosphate, Residual Free Chlorine, Turbidity, Total Filterable Residue, Calcium Hardness, pH, Alkalinity, Sodium, Sulfate, Total Cyanide, Insecticides, Herbicides, Base/Neutrals, Trihalomethanes, Volatile Organics, Vinyl Chloride, DBCP, EDB, Nitrate-N.

Wastewater

Metals by Graphite Furnace, Metals by ICP, Mercury, pH, Specific Conductivity, TDS, Total Hardness, Calcium, Magnesium, Sodium, Potassium, Total Alkalinity, Chloride, Fluoride, Sulfate, Ammonia-N, Nitrate-N, Orthophosphate, TKN, Total Phosphorus, COD, BOD, Non-Filterable Residue, Oil & Grease, Total Phenolics, Total Residual Chlorine, PCBs in Water, PCBs in Oil, Pesticides, Volatile Organics, Total Cyanide.

RHODE(SIAND) Department of Health, 54

Surface Wafer, Air, Wastewater, Potable Water, Sewage

Chemistry: Organic and Inorganic